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MOTIVATION
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Carbon capture technologies: Key of the CCUS

Huge amount of CO, emissions
* One third from power plant
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CO, CAPTURE PROCESSES

Most widely investigated capture technology: MEA solvent based postcombustion

* Cost & energy-intensive technology
* Thermal & oxidative degradation

Innovative carbon capture technologies
* High-efficient solvents/sorbents

— Greater capacity and selectivity
* Cost-effective capture process
— Reduced energy for regeneration

] ] o Process
DOE: Carbon Capture Simulation Initiative (CCSI)

* 5 National Labs and 6 Universities
* Solid sorbent technology: initial demonstration case

* https://www.acceleratecarboncapture.org/drupal/ Deployment
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SOLID SORBENT CAPTURE PROCESS

Solid sorbent reactor

* Bubbling fluidized bed Outlet Gas

* Fast fluidized bed Coo”ngwater_l rerrrrrrrreorest

* Moving bed A

e Fixed bed l«— Solids Inlet

Solid Outlet _..l

Bubbling fluidized bed Fluidized Bed
e 1D models

* Modeled in Aspen Custom Modeler

1 Cooling Water
TT1rrrrrrrrrrreasl Oulet

Inlet Gas

(A Lee, I&EC Research, 2013)

* Differential model
 Uses Aspen Properties package
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CO, CAPTURE PROCESS FLOWSHEET

coolln

gasOutan gasOutdn

solidLean

coldin

solidRich

Other
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flueOut warmOut
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r_____________________________I

fgin '
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General flow sheet for solid sorbent based carbon capture process
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SUPERSTRUCTURE OPTIMIZATION

Objectives

* Achieve the set carbon capture rate

* Minimize the cost of electricity (COE)

* Identify & develop the optimized bubbling fluidized bed process designs
— Optimal topology
— Optimal design conditions
— Optimal operating conditions

Hurdles
 Computationally intractable because of the detailed first principle models

Handles
* Generate the set of low complexity algebraic surrogate models

— Automated Learning of Algebraic Models for Optimization (ALAMO)

Model i mpi 0l

(http://archimedes.cheme.cmu.edu/?q=alamo)

“or axTmzae" build mode
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SURROGATE MODEL GENERATION

Process models Aspen software ALAMO Surrogate models
Fresh Clean
Sorbent Gas) Sample points / . \
- 7 ‘ol
( I \ Adsorber , | 2
o @) e (@) Build model =

) 4 K
r € RP : ‘ F - . 3D " ‘ : z€R
T[ <rl T < 'lf“ T4 < .: | Adaptive sampling Zk — f(a’/')
Y= = ‘:...—.‘ FAIL and

.. Model validation
\ I.'l)) ! — ; - : \ /
€O, Rich ' | -

Sorbent . ne
Independent variables x Dependent variables z
« Geometry  Geometry required
e Operating conditions e Operating condition required
* Inlet flow conditions * OQOutlet flow conditions

* Design constraints

( A. Cozad et al. ALAMO: Automatic learning of algebraic models for optimization.589b. Thursday, 8:50 AM, AIChE 2013 )

Carnegie Mellon University



BUBBLING FLUIDIZED BED

Bubbling fluidized bed reactor diagram

Outl i
utlet gas"‘ Solid feed CO, lean solid uutle/tL lInlet gas
—-.‘-‘-—--—___
Adsorber E Regenerator
4—\___‘_____
CO, rich gasr ICOZ rich solid outlet Solid feedI lOutlet gas
Model inputs Model outputs

* Inlet pressure * Outlet pressure

* Inlet temperatures * Outlet temperatures

* Inlet mass flow-rates e QOutlet mass flow-rates

* Inlet gas mole fractions e OQOutlet gas mole fractions

* Inlet solid compositions * Outlet solid compositions

* Heat exchanger conditions
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MINLP FORMULATION-ASSUMPTIONS

Assumptions for mixed integer nonlinear programming formulation

 Each stage is a single stage operation
* No pressure change for liquid and solid flow

* Each stage of adsorber/regenerator operation

coldin

-~

coldout &'

requires attached heat exchanger

e Surrogate models for fluidized bed adsorber Z-

and regenerator [
fgl —

gin

*  First principle models for SolidRich/SolidLean ™~ we §8 fucou
heat exchanger, blower, mixer
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OBIJECTIVE FUNCTION

Objective function

COE

_ (CCF)(TOCs. + TOC¢,) + OCpix + (CF)(OCy4p)

(CF)(MWh)

Where TOCCE = TOCE-S + TOC,,M + TOCMX + TOCﬂx

TOCcy =TOC o5+ TOCy oy +TOCyy +TOC,, + TOC), + TOC, 14 + TOC ey,

¢ TOC.: Capture system capital cost

* OC;,y: Fixed operating & maintenance cost

* OC,,g: Total variable cost

* MWh: Annual net megawatt-hours of power
* COE;¢g): COE increment

* TOC,,,: Cost of Rich solid heat exchanger

* TOC,,: Cost of Lean solid heat exchanger

* TOC,,: Cost of flue gas heat exchanger

* TOC,_: Sc plant capital cost
* TOC,,: Capital cost of reactors

* TOC,.,: Cost of vessel

* TOC,,,,,: Cost of blower

* TOC,,x: Cost of in-let heat exchanger

* TOC,,,: Cost of plate

* TOC,,..: Cost of platforms and ladders

plat*
* TOC,,.. .: Cost of elevator motor

elem®

* TOC,,.: Cost of elevator
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MINLP FORMULATION

Adsorber series

* Flue gas flow

- 214 Xo1. = F(surrogates)y(a) + x;% . (1-y(a))
i F., = F(surrogates)y(a) + F,’; , (1-y(a))
1

1-y(a) | 1-3(a) T = F(Surrogates)y(a) + T . (1- y(a))
: a,g a-1,9
I
i  Solid sorbent flow
i_ > = F(Surrogates)y(a) + 7> , (1—-y(a))
p : a,A a+l, A
I i Xo'n = F(Surrogates) y(a) + x;3; ,(1— y(a))
! , ,
i § T2 = F(Surrogates)y(a) + T, , (- y(a)
1 1
E PR * Logical constraints
1
i_ ________ i' y(@)=y(a+l1),vVaeca,,

Y y(@)>1
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MINLP FORMULATION-CONTINUED

Regenerator series
* Clean gas flow

out

Xg . = F (surrogates)y(d) + xg";  (1-y(d))
Fyy = F(surrogates)y(d) + F;; / (1—y(d))
T3 = F(Surrogates)y(d) + T, , (21— y(d))

1- ¥(d)

e Solid sorbent flow

out

Van = F(Surrogates)y(d) + ygi; 4 (1— y(d))
X = F(Surrogates)y(d) +xg}; » (1— y(d))
Taa = F(Surrogates)y(d) + Ty , (1 - y(d))

* Logical constraints

y(d)=y(d +1),vd ed,__
> y(d)>1

steam feedCO,
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CASE STUDY

coolin,
/Given conditions \ ey gasOutdn
e Conditions of flue gas cooiGut

e  Max number of adsorbers: 4

coldin

Max number of regenerators: 4

solidRich

e  Max number of trains: 16 Other

trains

\- Minimum capture rate: 90% / T

warmin

utilin
steam

<

feedCO,

flueOut warmOut

utilOut

Mixed-integer nonlinear programming model
* Parameters
Variables
Equations
* Economic modules
* Process modules

Objectives
* Minimize cost of electricity

* Minimize total capital cost
* Decide the optimal number of trains

in parallel * Material balances
+ Decide the optimal number of reactor * Hydrodynamic/Energy balances
in series * Reactor surrogate models
* Link between economic modules and
* Seek optimal operation conditions process modules
* Seek an optimal geometry for each unit * Binary variable constraints

* Bounds for variables
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RESULTS

Optimal topology Molar composition of flue gas

solidLean 16%
—@<--—---
 gasOut 14% -
coldin T A4 12% 1
10% -
coldQut

-1
1
1
1
1
1

8% -

6% -

hotOut

H 4% -
Other 11 Trains =
—T 2% - I
fgin > ﬂ'of;ﬂ -1 T T T T T T T .:1
‘ — ot solidRich TpureCG2 C0; H,0 C0O; H,0 C0O, H,0
uein

stoam Outlet from Outlet from Outlet from
power plant adsorber1  adsorber 2

m Outlet sorbent composition (mol/ke)

fm————————

COE(S/MWh)* 137.3
CapEX($M) 100 230.1 1000
steamFlow(kg/s) ~ 108 ~
Derate(MW) 0 103.7 650
sorbentF(kg/hr) 4E5 8.8E5 9E5
Nu (Number of trains) 12 12 16

* Cost of Electricity based on calculated capture
system with base plant. + $48/MWHh to account for
compression, transport & storage Adsorber 1 Adsorber2  Regenerator
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CONCLUSIONS

 We developed a surrogate model based framework to seek the
optimal topology and the relevant optimal design/operating
levels for carbon capture processes

 ALAMO provides simple surrogate models of adsorbers and
regenerators and thus leads to a low-complexity optimization
model

* Next steps:
—Extend MINLP to select simultaneously the reactor type for
each stage
—Integrate heat integration across the capture and compression
system with superstructure formulation
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