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MOTIVATION 
Backbone of  energy supply 

•  Petroleum 

•  Coal 

•  Natural Gas 

 

Huge amount of CO2 emissions  

• One third from power plant 

 

Global warming issues 

• Ice melting 

• Ocean level rising 

                   

CO2 emissions reduction 

• CO2 capture, Utilization,    

       & Storage (CCUS) 

 

Carbon capture technologies: Key of the CCUS 
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CO2 CAPTURE PROCESSES 

Most widely investigated capture technology: MEA solvent based postcombustion  

•       Cost & energy-intensive technology  

•       Thermal & oxidative degradation 

Innovative carbon capture technologies 

•   High-efficient solvents/sorbents 

         — Greater capacity and selectivity 

•   Cost-effective capture process 

         — Reduced energy for regeneration 

DOE: Carbon Capture Simulation Initiative (CCSI) 

• 5 National Labs and 6 Universities 

• Solid sorbent technology: initial demonstration case 

• https://www.acceleratecarboncapture.org/drupal/ 
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(A Lee, I&EC Research, 2013) 
  

 

Bubbling fluidized bed  
•   1D models 

•   Modeled in Aspen Custom Modeler 

•   Differential model 

•   Uses Aspen Properties package 

SOLID SORBENT CAPTURE PROCESS 

Solid sorbent reactor 

• Bubbling fluidized bed 

• Fast fluidized bed 

• Moving bed 

• Fixed bed 
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CO2 CAPTURE PROCESS FLOWSHEET 

General flow sheet for solid sorbent based carbon capture process 
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SUPERSTRUCTURE OPTIMIZATION  
Objectives 

• Achieve the set carbon capture rate 

• Minimize the cost of electricity (COE) 

• Identify & develop the optimized bubbling fluidized bed process designs 

         — Optimal topology 

         — Optimal design conditions 

         — Optimal operating conditions                 

 

 
Hurdles 

• Computationally intractable because of the detailed first principle models 

Handles 

• Generate the set of low complexity algebraic surrogate models 

        — Automated Learning of Algebraic Models for Optimization (ALAMO) 

  (http://archimedes.cheme.cmu.edu/?q=alamo) 
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SURROGATE MODEL GENERATION 

Independent variables x 

• Geometry 

• Operating conditions 

• Inlet flow conditions 

 

Dependent variables z 

• Geometry required 

• Operating condition required 

• Outlet flow conditions  

• Design constraints 

 

Process models Aspen software ALAMO Surrogate models 

( A. Cozad et al. ALAMO: Automatic learning of algebraic models for optimization.589b. Thursday, 8:50 AM, AIChE 2013 ) 
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BUBBLING FLUIDIZED BED 

Model inputs  

• Inlet pressure 

• Inlet temperatures 

• Inlet mass flow-rates  

• Inlet gas mole fractions  

• Inlet solid compositions  

• Heat exchanger conditions 

Bubbling fluidized bed reactor diagram 

Model outputs  

• Outlet pressure    

• Outlet temperatures  

• Outlet mass flow-rates 

• Outlet gas mole fractions  

• Outlet solid compositions  
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MINLP FORMULATION-ASSUMPTIONS 

Assumptions for mixed integer nonlinear programming formulation 

 
•  Each stage is a single stage operation 

•  No pressure change for liquid and solid flow 

•  Each stage of adsorber/regenerator operation  

       requires attached heat exchanger 

•  Surrogate models for fluidized bed adsorber  

       and regenerator 

•  First principle models for SolidRich/SolidLean 

       heat exchanger, blower, mixer 
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OBJECTIVE FUNCTION 
Objective function 

•  TOCCc: Capture system capital cost 

•  OCFIX: Fixed operating & maintenance cost 

•  OCVAR: Total variable cost  

•  MWh: Annual net megawatt-hours of power 

•  COETS&M: COE increment 

•  TOCrhx: Cost of Rich solid heat exchanger  

•  TOClhx: Cost of Lean solid heat exchanger 

•  TOCflx: Cost of flue gas heat exchanger 

• TOCSc: Sc plant capital cost  

• TOCCs: Capital cost of reactors 

• TOCves: Cost of vessel 

• TOCblow: Cost of blower 

• TOCHX: Cost of in-let heat exchanger 

• TOCpla: Cost of plate 

• TOCplat: Cost of platforms and ladders 

• TOCelem: Cost of elevator motor 

• TOCele: Cost of elevator 

Where 
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MINLP FORMULATION 
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•  Solid sorbent flow 
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MINLP FORMULATION-CONTINUED 
Regenerator series 
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•  Clean gas flow 
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CASE STUDY 

Given conditions 

• Conditions of flue gas 

• Max number of adsorbers: 4 

• Max number of regenerators: 4 

• Max number of trains: 16 

• Minimum capture rate: 90% 

  

 

 
Objectives 

• Minimize cost of electricity 

• Minimize total capital cost 

• Decide the optimal number of trains  

       in parallel 

• Decide the optimal number of reactor 

       in series 

• Seek optimal operation conditions 

• Seek an optimal geometry for each unit 
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RESULTS 

• Cost of Electricity based on calculated capture 
system with base plant. + $48/MWh to account for 
compression, transport & storage 

Optimal topology Molar composition of flue gas  

Outlet sorbent composition (mol/kg)  

Adsorber 1 Adsorber 2 Regenerator 

Outlet from 
adsorber 1 

Outlet from 
adsorber 2 

Outlet from 
power plant 

CO2 capture rate: 90% 
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CONCLUSIONS 

• We developed a surrogate model based framework to seek the 
      optimal topology and the relevant optimal design/operating 
      levels for carbon capture processes 

• ALAMO provides simple surrogate models of adsorbers and 
regenerators and thus leads to a low-complexity optimization 
model 

• Next steps: 
       —Extend MINLP to select simultaneously the reactor type for 
           each stage 
       —Integrate heat integration across the capture and compression 
           system with superstructure formulation 


