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Carbon Capture Simulation Initiative

Identify
promising
concepts

National Labs

~

,’ﬂ \

BERKELEY LAaB

2,
NSTL - LosAlamos

B Lawrence Livermore
National Laboratory

\’/
Pacific
Northwest

Reduce the time
for design &
troubleshooting

Academia

Carnegie Mellon

PRINCETON
A UNIVERSITY

WestVirginiaUniversity

BOSTON
UNIVERSITY

Institute for
CGLEAN AND SECURE ENERGY
", THE UNIVERSITY OF UTAH

Goal is to develop M&S tools to accelerate the
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Assess different CC technology via simulation

and modeling
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Can we use the world’s most abundant and widely
distributed fossil fuel source in a different way?
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An artist * s rendition depicts the goal of the

FutureGen initiative, which aims to build the m

world ” s first integrated sequestration and CO

hydrogen production research power plant based H>

on coal gasification.

Source: DOE Office of Fossil Energy l
—— | | By-products

As part of Clean Coal Initiative | H2S
developing advanced coal CO2
technologies based on Slag (Mineralsl)

GASIFICATION to achieve zero

emission of pollutants (CO2) while _— Bl
still remaining economically Cam sy
competitive N A

Source: Aytekin Gel's various presentations Source: Overview of Gasification Technologies, Gary J. Stiegel, NETL (2005)
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http://www.nccs.gov/2008/01/17/simulation-aids-development-of-first-coal-plants-with-near-zero-emissions/
http://www.nccs.gov/2008/01/17/simulation-aids-development-of-first-coal-plants-with-near-zero-emissions/

Challenge: How can we desigh commercial
scale gasifiers for optimized operation?

Use validated computer
models for answering
scale up questions

Parametric Study
 Length/Diameter
» Coal feed rate
« Solids circulation rate
* Recycled syngas
 Coal jet penetration

MFIX simulation of pilot scale 13 MW transport
gasifier at Wilsonville, AL. Validation of
the computer model with prototype
system
Guenther et al (2003)

Source: Aytekin Gel’s various presentations 285 MW Commercial Gasifier

Lawrence Livermore National Laboratory L pres oo



NRAP: UQ of Geochemical Impact of CO, Leakage

into Aquifers

ir: sim0/38

= Sand volume fraction | = Sand porosity = van Genuchten a in sand
» Correlation length in x | = Clay porosity = van Genuchten a in clay
» Correlation length iny | = Sand density » Permeability in sand
= Correlation length in z | = Clay density = Permeability in clay

= van Genuchtenmin sand = CO, diffusivity
» van Genuchten m in clay » CO, leakage flux rate

» 3D Heterogeneous domain of 10000x
10000x240 to represent High Plains aquifer
including saturated and unsaturated zones

» Two geologic facies: sand and clay

» Regional groundwater flow is maintained by
0.3% hydraulic gradient

» Asingle leakage source is at (4500.0, 0.0,
198.41)

» Time steps = 103 for 100 years

Source: Yunwei Sun’s various presentations
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Steps in uncertainty quantification (UQ)

= Definition (of goals/objectives: what to do?)
* simulation models, quantities of interest, assumptions

= |dentification (sources of uncertainties: where?)
°* model and data uncertainties

= Characterization (of uncertainty sources, what form?)
* parametric distributions (priors) and/or model form
* Aleatoric/epistemic, continuous/discrete

= Propagation (of uncertainty through models: how?)
e forward and backward

= Analysis (of impact of uncertainties: so what?)
* sensitivity analysis, risk analysis, ...

of all relevant uncertainties in simulation models
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A typical UQ analysis
X Design variables

p(w;) -
p(n)

— A > Y
p(w,)
>
pW,)_ -
posteriors
Prior input l p(,/’/)
[?lstrlbutlons S _ Observational data
(independent) Prediction with
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Simple uncertainty analysis may turn out to be
computationally expensive

mean interval

IMY) = I@p(w) dw max,Y(w) —min, Y(w)

s*m= | [yW]’ pwdw- mi(x)

+ higher order moments

* Y(®w) may be expensive to evaluate

= Sufficient accuracy may require many integration points
« Highly nonlinear functions, may be nonsmooth
« High dimensional uncertain parameter space

» Response surface (surrogate, emulator, ROM)

» Dimension reduction (parameter screening)
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Bayesian inference/Parameter Estimation/Calibration

Continuous Variables

n(w| D)= p(D|wpw) | Qp(D|w)p(W)

Solution method: MCMC-like methods
» for aleatoric uncertainties - posterior distributions
« for epistemic uncertainties ->feasible subspace
These methods are computationally very expensive
* need large sample sizes for burn-in and generating posteriors
= |n practice, these are calculated using response surfaces
= More complex cases: mixed continuous/discrete
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Global Sensitivity Analysis

First order sensitivity analysis

= BV W, |w)pw, | wydw, - myY piw)dw 15

Total order sensitivity indices
15,= CROY (W, | ., p(w | W jawy ) - (Y (e, )pwe Jaw, 152

= Variance-based SA is computationally expensive
* need many integration points for accuracy

* |n practice, these are calculated using response surfaces
» the use of parametric forms reduce computational cost further
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In complex applications, these typical UQ analysis
will be performed hierarchically

Full
system
posteriors /\
subsystem subsystem

i

single physics modules
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Major Themes in UQ Analysis Methods

B Dimension reduction methods
« High-dimensional physics parameter space (subset selection)
 High-dimensional model output space (principal components)
B Response surface (surrogate, emulators) methods
« Surrogate model selection (splines, GP, regression, ..)
« Exploit smoothness in the approximate mapping
« Response surface validation
B Basic uncertainty analysis
« Statistical moments
« Correlation analysis, ANOVA
m Calibration/Data integration
« Bayesian-like inferences (filtering, gates, sets)
B Quantitative sensitivity analysis methods
« Variance decomposition (1st, 2" group, and total order)
m Parameter study/design exploration
B Reliability analysis
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How to make these UQ methods available to users?
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PSUADE is a software to facilitate UQ analysis
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- A Problem Solving Environment for Uncertainty Analysis and Design Exploration
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A Simple UQ Workflow

# inputs > 10?

Response . :
Parameter 3|  surface Uncertainty
screening analysis ana|y3|s
Sobol’
= Sensitivity
Response analysis
Surface +
Parameter
Data distributions
fusion > Reliability
L analysis
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A Suite of Dimension Reduction Methods

= Parametric methods (e.g. linearity/monotonicity assumptions)
* derivative-based methods (local)
» Standardized regression coefficient (SRC)
» Spearman rank correlation coefficients (SRRC)
* Plackett-Burman
 Fractional factorial
» Gradient-based Methods (global)
* Morris method and its variants (e.g. modified Morris)
= Approximate emulator methods (global)
* e.g. splines, Gaussian process, etc.
= Methods based on nearest neighbors (global)
* Delta test, ...
* Tree-based methods (global)
* Classification and regression tree (CART) + bootstrap

nonparametric methods are more suitable for multiphysics models
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A Suite of Response Surface Methods + Validation +
Visualization

Generate Parametric: | .
Initial sample linear regression, quadratic,
higher order, collocation
‘l’ nonlinear regression functions
Nonparametric:
Run Multivariate adaptive splines
simulations < Gaussian process
Artificial neural network
‘l, Radial basis functions
Variants: with bootstrapping
Select
Interpolation
scheme Response surface
Validation:
- R-squared
> Sampling - Resubstitution test
refinement - Test set
- k-fold validation
- visualization
(_Done ) Uniform or adaptive
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Adaptive Response Surface Analysis




Example: a carbon capture absorber system

Objective: quantify uncertainty in %
of CO2 capture

Rate-based reactions

= 7 egns: 3 equilibrium/4 kinetic

= Equilibrium eqgns: AT (DT1, DT2)

= Kinetic eqgns: rate constant k,,
(A4-A7)

Mass transfer

= Use the Hanley model

= UQ study restricted to tuning the interfacial
area factor that affects the mass transfer rates
(AE)
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Example: a carbon capture absorber system

CDF (~50% > 90%) Scatterplots and VCE (A6 AE important)
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Example: CCSI UQ System Architecture

Graphical user interface or

command line interpreter

“ Common UQ tool interface

PSUADE

‘ AspenClient

‘AspenServer “

Figure 1: 2-D MARS Response Surface
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Gasification simulations for Scale-up — with VVUQ

Compare
) S simulation
results with
exp dat
Objective
function for Predicted
g]?]?tdness concentrations
of fi :
\ 4 e MEIX Predlptfed |
— Simulation of Simulation of Commdeer\(/:ilté:le- e
PSUADE >{ T commercial- _
pllot-§9ale scale gasifier performar_u_:e with
gasifier gquantified
A uncertainty

Calibrated model parameters (e.g., rate
constants) and model form uncertainty

Solids Circ. Rate
13 MW,, gasifier

Source:,Sino-US Chemical Engineering Conference, Madhava Syamlal et al., NETL (2011)

285 MW, Gasifier
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Example: UQ Workflow for NRAP

Input Distributions

»

Sampling

4

»

Simulation

Emulation

~ Source: Yunwei Sun’s various presentations
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DE download site:

mputation.linl.gov/casc/uncertainty _quantifi
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