Non-intrusive UQ Methods and Software for Engineering Applications

SIAM UQ Conference April 3, 2012

Lawrence Livermore National Laboratory

Charles Tong

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- A few applications
- A UQ Process
- Methods for propagation and analysis of uncertainties
- A UQ software: PSUADE
- Usage examples

Carbon Capture Simulation Initiative

Goal is to develop M&S tools to accelerate the commercialization of Carbon Capture Technologies

Assess different CC technology via simulation and modeling

Lawrence Livermore National Laboratory

LLNL-PRES-XXXXXX

Can we use the world's most abundant and widely distributed fossil fuel source in a different way?

An artist's rendition depicts the goal of the FutureGen initiative, which aims to build the world's first integrated sequestration and hydrogen production research power plant based on coal gasification.

Source: DOE Office of Fossil Energy

As part of Clean Coal Initiative developing advanced coal technologies based on **GASIFICATION** to achieve zero emission of pollutants (CO2) while still remaining economically competitive

Source: Aytekin Gel's various presentations

Source: Overview of Gasification Technologies, Gary J. Stiegel, NETL (2005)

Challenge: How can we design commercial scale gasifiers for optimized operation?

NRAP: UQ of Geochemical Impact of CO₂ Leakage into Aquifers

- 3D Heterogeneous domain of 10000× 10000×240 to represent High Plains aquifer including saturated and unsaturated zones
- Two geologic facies: sand and clay
- Regional groundwater flow is maintained by 0.3% hydraulic gradient
- A single leakage source is at (4500.0, 0.0, 198.41)
- Time steps = 103 for 100 years

Structure Model	NUFT Model	
 Sand volume fraction Correlation length in x Correlation length in y Correlation length in z 	 Sand porosity Clay porosity Sand density Clay density van Genuchten m in sand van Genuchten m in clay 	 van Genuchten α in sand van Genuchten α in clay Permeability in sand Permeability in clay CO₂ diffusivity CO₂ leakage flux rate

Source: Yunwei Sun's various presentations

Steps in uncertainty quantification (UQ)

Definition (of goals/objectives: what to do?)

simulation models, quantities of interest, assumptions

Identification (sources of uncertainties: where?)

- model and data uncertainties
- Characterization (of uncertainty sources, what form?)
 - parametric distributions (priors) and/or model form
 - Aleatoric/epistemic, continuous/discrete
- Propagation (of uncertainty through models: how?)
 - forward and backward
- Analysis (of impact of uncertainties: so what?)
 - sensitivity analysis, risk analysis, ...

of all relevant uncertainties in simulation models

Simple uncertainty analysis may turn out to be computationally expensive

$$m(Y) = \int_{W} \underbrace{Y(W)}_{V} p(W) dW \quad \max_{\Omega} Y(\omega) - \min_{\Omega} Y(\omega)$$
variance
$$\int_{W} \underbrace{[Y(W)]^{2} p(W) dW - m^{2}(Y)}_{W}$$

+ higher order moments

- Y(ω) may be expensive to evaluate
- Sufficient accuracy may require many integration points
 - Highly nonlinear functions, may be nonsmooth
 - High dimensional uncertain parameter space
- Response surface (surrogate, emulator, ROM)
- Dimension reduction (parameter screening)

Bayesian inference/Parameter Estimation/Calibration

Continuous Variables

 $\pi(W|D) = p(D|W)p(W) / \hat{0} p(D|W)p(W)$

- Solution method: MCMC-like methods
 - for aleatoric uncertainties \rightarrow posterior distributions
 - for epistemic uncertainties →feasible subspace
- These methods are computationally very expensive
 - need large sample sizes for burn-in and generating posteriors
- In practice, these are calculated using response surfaces
- More complex cases: mixed continuous/discrete

Global Sensitivity Analysis

First order sensitivity analysis

$$h_i^2 = \hat{0} \stackrel{\text{\acute{e}}}{=} \hat{0} \stackrel{\text{\acute{e}}}{=} \hat{0} Y(W_{\sim i} | W_i) p(W_{\sim i} | W_i) dW_{\sim i} - m(Y) \stackrel{\text{\acute{u}}}{=} p(W_i) dW_i / S^2$$

Total order sensitivity indices

$$TS_{i} = \grave{0}\overset{\acute{e}}{\ddot{e}}\grave{0}\left(Y(W_{i} \mid W_{\sim i})p(W_{i} \mid W_{\sim i})dW_{i}\right)^{2} - m^{2}(Y(W_{\sim i}))\overset{\grave{u}}{\mu}p(W_{\sim i})dW_{\sim i}/S^{2}$$

- Variance-based SA is computationally expensive
 - need many integration points for accuracy
- In practice, these are calculated using response surfaces
 - the use of parametric forms reduce computational cost further

In complex applications, these typical UQ analysis will be performed hierarchically

Major Themes in UQ Analysis Methods

- Dimension reduction methods
 - High-dimensional physics parameter space (subset selection)
 - High-dimensional model output space (principal components)
- Response surface (surrogate, emulators) methods
 - Surrogate model selection (splines, GP, regression, ..)
 - Exploit smoothness in the approximate mapping
 - Response surface validation
- Basic uncertainty analysis
 - Statistical moments
 - Correlation analysis, ANOVA
- Calibration/Data integration
 - Bayesian-like inferences (filtering, gates, sets)
- Quantitative sensitivity analysis methods
 - Variance decomposition (1st, 2nd, group, and total order)
- Parameter study/design exploration
- Reliability analysis

How to make these UQ methods available to users?

PSUADE is a software to facilitate UQ analysis

A Problem Solving Environment for Uncertainty Analysis and Design Exploration

A Simple UQ Workflow

Lawrence Livermore National Laboratory

17 LLNL-PRES-XXXXXX

A Suite of Dimension Reduction Methods

- Parametric methods (e.g. linearity/monotonicity assumptions)
 - derivative-based methods (local)
 - Standardized regression coefficient (SRC)
 - Spearman rank correlation coefficients (SRRC)
 - Plackett-Burman
 - Fractional factorial
 - Gradient-based Methods (global)
 - Morris method and its variants (e.g. modified Morris)
- Approximate emulator methods (global)
 - e.g. splines, Gaussian process, etc.
- Methods based on nearest neighbors (global)
 - Delta test, ...
- Tree-based methods (global)
 - Classification and regression tree (CART) + bootstrap

nonparametric methods are more suitable for multiphysics models

A Suite of Response Surface Methods + Validation + Visualization

Adaptive Response Surface Analysis

Example: a carbon capture absorber system

Objective: quantify uncertainty in % of CO2 capture

Rate-based reactions

- 7 eqns: 3 equilibrium/4 kinetic
- Kinetic eqns: rate constant k_n (A4-A7)

Mass transfer

- Use the Hanley model
- UQ study restricted to tuning the interfacial area factor that affects the mass transfer rates (AE)

Example: a carbon capture absorber system

RSA: training and test sets (~5000 each)

Example: CCSI UQ System Architecture

Gasification simulations for Scale-up – with VVUQ

Example: UQ Workflow for NRAP

Source: Yunwei Sun's various presentations

PSUADE download site:

https://computation.llnl.gov/casc/uncertainty_quantification

THE END