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Fossil fuels helped build the modern world
... will remain the major fuel for next 30 years
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U.S. Energy Information Administration, International Energy Outlook 2012, DOE/EIA-0484(2012)
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IPCC ARS: “Warming of the climate system is
unequivocal”

Global surface temperature ——— 'DGG
change is likely to exceed T
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Human influence on the
climate system Is clear.

Climate Change 2013, The Physical Science Basis, Working Group | Contribution to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers
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Emissions reductions (GtCO,)
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CCS is a key technology for reducing global
CO, emissions

] Nuclear 8% (8%)
Power generation efficiency and fuel switching 3% (19%)
7 Renewables 21% (23%)
| End-use fuel switching 12% (12%)
CCS 14% (17%)
End-use fuel and electricity efficiency 42% (39%)
Note: Numbers in brackets are shares in 2050. For
_ example, 14% is the share of CCS in cumulative emission
reductions through 2050, and 17% is the share of CCS in
emission reductions in 2050, compared with the 6DS.
| | | 1
2009 2020 2030 2040 2050

Most 2050 climate budgets require CCUS from NatGas power

Source: J. Friedmann, “A Decade of Projects: CCS to 2022,” MIT 15th Carbon
Sequestration Forum, 27 January 2014, Austin, TX.
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Three options for CO, capture in power plants

Post-combustion capture
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Accelerating capture technology development

Scale up with greater
confidence

\ 4

Aided by predictions
from physics-based
simulations

/
. @
¢« > o — @ 20 MW
1 kw 1 MW 5 MW
. Source of photo:
Solid-sorbent based CO, capture http://en.wikipedia.org/wiki/File:DTE_St_Clair.jpg
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Modeling & Simulation tools for accelerating
the development of CO, capture technology

Carbon Capture Simulation Initiative

Reduce the time
for design &
troubleshooting

Identify
promising
concepts
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D.C. Miller et al., “Carbon Capture Simulation Initiative: A Case Study in Multiscale
Modeling and New Challenges,” Annu. Rev. Chem. Biomol. Eng., 2014. 5:301-23

Quantify the technical risk,
to enable reaching larger
scales, earlier

Stabilize the cost during
commercial deployment

Industry
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CCSI framework for integrating modeling and
simulation tools
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CCSl toolset enables the integrat.on of models
at multiple scale

D-RM Builder
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Particle-scale reaction kinetics model

PEI-impregnated silica sorbent
2RoNH + COy(gas) = RoNCO; + RoNHY
RoNH + HyO(phys) + CO2(gas) = HCO; + RoNHJ
H,0O(gas) = H2O(phys)

100% CO
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1. K.S. Bhat, D.S. Mebane, H. Kim, J. Eslick, J.R. Wendelberger, D.C. Miller, LANL Tech. Rep. LA-UR-12-21855, 2012.

2. D.S. Mebane, J.D. Kress, C.B. Storlie, D.J. Fauth, M.L. Gray, K. Li, J. Phys. Chem. C 117 (2013) 26617.
3. K.S. Bhat, D.S. Mebane, C.B. Storlie and P. Mahapatra, J. Am. Stat. Association , 2014 submitted.
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Optimization tools enable rigorous screening and
design of new processes

solidRich’

ccccccc

Predictions with
uncertainty quantified
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Submodels Optimized

Process

_—
D

Amazon EC2 /

Turbine Gateway SA _ /7 74

Windows 2008 SCL Server é - /
_ g " /
TurbineClient @ [—— qg' ® 4

Stand Alone g - - -~
Turbine Gateway 3 >
Windows SQL Server

u Operating condition

- U.S. DEPARTMENT OF

ENERGY

Lawrence Livermore 5.
National Laboratory - Los Alamos I\E?tzl:&lvzst




Device-scale models must account for meso-
scale structures in fluidized beds

FRENOREER o - Harticle
gas out : ; clusters
| ~O(1 mm) CFD grid size must be ~O(1 mm).

blue = gas - Millions of cells in 2D,
- Billions of cells in 3D!

g COMPUTATIONALLY
2 BN NS INTRACTIBLE!
o s % Immersed heat-
S8 e o WS ¥ transfer tubes
! e " Ay "“O(l Cm)
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CO, Adsorber  “— o5cm

Approach: Probe meso-scale structures and develop effective
coarse-grained “filtered” constitutive models.

Developed for fluidized beds with and without immersed tubes.
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Filtered constitutive models

These filtered models yield accurate predictions

Higly-resolved periodic cell simulations  ;sing affordable CFD simulations with coarse-grids.
used to construct filtered models.

Coarse-grid Coarse-grid
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Fine-grid WITHOUT
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coarse grids Sarkar A, Sun X, Sundaresan S. Verification of sub-grid filtered drag models for gas-

particle fluidized beds with immersed cylinder arrays. Chem. Eng. Sci., 2014.
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A validation hierarchy generates confidence in
predictive simulations

Need to predict the performance of devices yet to be built.
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Uncertainty quantification enables the
determination of confidence bands in predictions

< -, Calibrated Discrepancy function
||| parameter q
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Courtesy: Tingwen Li, NETL g
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Storlie, C.B., Lane, W.A., and Ryan, E.M., "Calibration of 2

Computational Models with Categorical Parameters and
Correlated Outputs via Bayesian Smoothing Spline ANOVA,"
submitted to the J. of Am. Stat. Association, 2013.
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“The emulator prediction bands are within
observation error in all cases”
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K. Lai, Z. Xu, W. Pan, L. Shadle, C. Storlie, J. Dietiker, T. Li, S. Dartevelle, X. Sun, “Hierarchical Calibration
and Validation of High-fidelity CFD Models with C2U Experiments ,” Milestone Report, 2014.
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Summary

The usual path from discovery to commercialization is too slow for
developing urgently needed CO, capture technologies.

CCSI - a partnership among U.S. national laboratories, industry and
universities — is developing a modeling and simulation toolset for
accelerating CO, capture technology development.

The CCSI Toolset uses a multi-scale approach, including models of
particle/film-scale reaction kinetics, CFD models of capture reactors,
and steady and dynamic models of capture processes.

— Reduced order models transfer information between scales.

— Optimization tools enable rigorous screening and design of
new processes.

— Filtered models speed up device-scale computations.

— A validation hierarchy generates confidence in predictive
simulations.

— Uncertainty quantification enables the determination of
confidence bands in predictions.
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57 National Lab researchers

20 Industry representatives
.f13 Students/post-docs
- 9 Professors =

5 Natlonal Labs

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The
‘iews and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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