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What is Computer Model Calibration?

» Find a plausible set of model

parameter values () that Bayesian Calibration
best produce the reality of Prior Distbutions
eXperimentaI (Or fleld) data Parameter | Parameter p Discrepancy
» In the Bayesian paradigm, o ===
this entails putting a prior l
distribution on @ and -
P . xpcnmcma
conditioning on the Data
expirimental data to refine l
thIS prior dIStrIbutlon Posterior Distributions
Parameter 1 Parameter p Discrepancy
» There can also be a model A . e
form discrepancy function

which admits the possibility
of model bias.
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“Traditional” (Kennedy & O'Hagan 2001) Calibration

» Represent the output of the physical system producing the
experimental data as

Yn = U(Xna9)+5(xn)+6n, n= 1,...,N.
1(xn, t) is a simulator of the physical system.

(ii) o(x) is a discrepancy function to alow for model bias.
iid ,
) €n ~ N(0,0?) are observational measurement errors.

t = [t1,...,tg] is a vector of model parameters. If fixed at an
appropriate (unknown) value of t = 0, then n(x, 8) will best
approximate the physical system.

» Typically it is assumed that ¢ is a Gaussian Process (GP)

» If simulator runs are expensive, then a sample (e.g., LHS) of runs is
obtained and 7 is modeled as a GP as well.

» Estimation of @, 1, and J is done within a Bayesian framework
(Higdon, Kennedy, Cavendish, Cafeo & Ryne 2004).
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Bubbling Fluidized Bed Example

Goal: Calibration of a computational fluid dynamics (CFD) model as a
first step toward upscaling to a large CO5 capture system.

CFD simulation Setup

Experimental Setup

Freeboard
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Bubbling Fluidized Bed Example

» Experimental Outputs y:
y1 : Bubble Frequency (measured in Hertz)
B observed at angles {—90, —45,0,45,90}° and velocities
{5.5,7.0,11.0,12.6} cm/sec.
y» : Phase Fraction (proportion of time a bubble is present)
m observed at angles {—90, —45,0,45,90}° and velocity 12.6 cm/sec).
» Experimental Inputs x:
x1 : Gas Velocity, [5.5,16.1]
xo @ Angular Location on Tube, [—90,90]
» Model Parameters t:
t; : Coefficient of restitution, particle-particle € [0.8,0.997]
ty : Coefficient of restitution, particle-wall € [0.8,0.997]
t3 : Friction angle, particle-particle € [25.0,45.0]
ty : Friction angle, particle-wall € [25.0,45.0]
ts : Packed bed void fraction € [0.3,0.4]
ts : Drag model € {Syamlal-OBrien, Wen-Yu, Gidaspow}
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Bubbling Fluidized Bed Example

>

Latin Hypercube Sample (LHS) of 90 runs was used to make CFD
model runs.
Each run produced (after post-processing) the y; and y» values at
angles x» = {—90.0, —67.5, —45.0, —22.5,0.0,22.5,45.0,67.5,90.0}.
Seven free “parameters” to choose values for are then
(Xl, t1,to, ..., ts).
x1 was restricted to values where there were experimental data
x1 € {5.5,7.0,11.0,12.6} cm/sec.
So all in all there are:
— experimental observations for y; at 4 velocities (each at 5 angles)
— experimental observations for y» at 1 velocity (each at 5 angles)

— 90 CFD runs total covering four distinct velocites (each run provides
output at 9 distinct angles)
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Bubbling Fluidized Bed Example
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Bubbling Fluidized Bed Example
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Common Complications in Computer Model Calibration

1. There are multiple correlated outputs (e.g., Bubble Frequency and
Void Fraction) so the observations (y,,) are really vectors.

2. There are categorical model parameters (e.g., which Drag model is
used inside the CFD model).

3. There may be multiple possible models 1 (e.g., a coarse
approximation that runs much faster than a more accurate high
resolution model. Not in the bubbling bed example, however.)

4. There may be some missing experimental observations for some of
the outputs. (e.g., not all outputs were measured in all trials, or
data is combined from multiple sources).
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Calibration w/ Multiple Outputs & Categorical Parameters

A multivariate output of the physical system y = [y1,...,ym]" is now a
vector of simulator outputs plus a multivariate discrepancy function 4,
plus the measurement error vector, €, i.e.,

yn:n(xn70)+6(xn)+€n, n:].,...,N.

> e.g., n(xm 0) = [nl(xm 0)7 e 777M(xn7 0)]T
» 1, 0 and €, need a multivariate representation to appropriately
account for correlation among the multiple outputs.

» The emulator also needs to account for categorical parameters (e.g.,
which drag model to use).

» These will be accomplished within the Bayesian Smoothing Spline
(BSS-)ANOVA GP (Reich, Storlie & Bondell 2009, Storlie, Fugate,
Higdon, Huzurbazar, Francois & McHugh 2012).
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BSS-ANOVA Model

» We assume the emulator for 7 (and the discrepancy § with obvious
changes) is a GP with the BSS-ANOVA covariance function.

» This GP can be conveniently written as a sum of main effects plus
interaction components, i.e.,

n(x) = Bo+Zm(XJ +Z77u (%5, 1) + (1)

i<y’

» Each functional component in (1) can be further written as an
orthogonal basis expansion via Karhunen-Loéve, e.g.,

p
X) = Z/BPJ¢p(>9) with By " (0,73-2). (2)
=1
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BSS-ANOVA Model: Basis Functions

» The ¢, get increasingly higher frequency and have decreasingly less
magnitude, so the expansion can be truncated at some value P.
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BSS-ANOVA Model Advantages

>

S
’\

This is just a linear model in the §'s! Just need to estimate the 3's
and the discrepancy function is analytically specified by (1) and (2).

Categorical parameters can be easily treated (Storlie, Reich, Helton,
Swiler & Sallaberry 2013). Multiple models can be treated as levels
of a categorical parameter.

O(J?(N + M)) computational efficiency for the MCMC algorithm as
opposed to O((N + M)3) for the traditional squared exponential
covariance GP, where N 4+ M is the total number of experimental
observations plus simulator runs.

Analytic forms are also nice for portability from one problem to the
next (calibration — uncertainty propogation, or upscaling,...).
Conjugate priors (i.e., inverse Wishart) for the variance terms (7})
leads to Gibbs sampling for all parameters in the model, with the
exception that MH updates are needed for the elements of 6.
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Bubbling Fluidized Bed: Theta Trace Plots
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Bubbling Fluidized Bed: Theta Posterior
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Bubble Frequency Fitted Plots
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Bubbling Fluidized Bed: Discrepancy Plots
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Thank you!

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions

of authors expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.
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