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Carbon Capture Challenge 
• The traditional pathway from discovery to 

commercialization of energy technologies 
can be quite long, i.e., ~ 2-3 decades 

• President’s plan requires that barriers to the 
widespread, safe, and cost-effective 
deployment of CCS be overcome within 10 
years 

• To help realize the President’s objectives, 
new approaches are needed for taking 
carbon capture concepts from lab to power 
plant, quickly, and at low cost and risk 

• CCSI will accelerate the development of 
carbon capture technology, from discovery 
through deployment, with the help of 
science-based simulations  

Bench Research   
~ 1 kWe 

Small pilot           
< 1 MWe 

Medium pilot      
1 – 5 MWe 

Semi-works pilot 
20-35 MWe 

First commercial 
plant, 100 MWe 

Deployment, >500 
MWe, >300 plants 
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Carbon Capture Simulation Initiative 
www.acceleratecarboncapture.org 

National Labs Academia Industry 

Identify  
promising  
concepts 

Reduce the time  
for design & 

troubleshooting 

Quantify the technical 
risk, to enable reaching 

larger scales, earlier 

Stabilize the cost 
during commercial 

deployment 
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Heterogeneous Simulation-Based Optimization Framework 
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Heat/Power Integration 

Automated Formulation/Solution 

Derivative-Free 
Optimization 

Methods 

Rigorous Optimization-based Process Synthesis 

Superstructure 
for Optimal 

Process 
Configurations 

Simultaneous 
Superstructure 

Approach 
Power, Heat, 

Mass Targeting 
 

PC Plant 
Configuration 

Sorbent Models 
Amine, Zeolite, 

MOF 

External 
Collaboration 

(ICSE) 

Industry  
Specific  

Collaboration 

Flexible Modular Models 

Solid Sorbent Carbon 
Capture Reactor Models 

ACM, gPROMS 

PC Plant Models 
Thermoflow 
Aspen Plus 

Compression System 
Models 

Aspen Plus, ACM, 
gPROMS 

Oxy-combustion 
Aspen Plus, ACM, 
gPROMS, GAMS 

Other carbon capture 
models 

Aspen Plus, ACM, 
gPROMS, GAMS 

Automated Learning of Algebraic 
Models for Optimization

ALAMO
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PROCESS DISAGGREGATION 

Block 1: 
Simulator 

Model 
generation 

Block 2: 
Simulator 

Model 
generation 

Block 3: 
Simulator 

Model 
generation 

Surrogate Models 
Build simple and accurate 
models with a functional 

form tailored for an 
optimization framework 

Process Simulation 
Disaggregate process into 

process blocks 

Optimization Model 
Add algebraic constraints 

h(x)=0: design specs, 
heat/mass balances, and 

logic constraints 
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• Build a model of output variables z as a function of input 
variables x over a specified interval 
 
 
 

 
 

 
 

 

MODELING PROBLEM STATEMENT 

Independent variables: 
Operating conditions, inlet flow 

properties, unit geometry 
 

Dependent variables: 
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc. 
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Process simulation 



Carnegie Mellon University 7 

ALGORITHMIC FLOWSHEET 

true 

Stop 

Update training 
data set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive sampling 

Model 
converged? 
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• Goal: To generate an initial set of input variables to evenly 
sample the problem space 
 
 
 
 
 

• Latin hypercube design of experiments [McKay et al., 79] 

 
 

DESIGN OF EXPERIMENTS 
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• After running the design of experiments, we will evaluate 
the black-box function to determine each zi 
 
 
 
 
 
 
 

INITIAL SAMPLING 

Initial 
training 
set 
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Process simulation 
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• Goal: Identify the functional form and complexity of the 
surrogate models 
 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 
 
 
 
 

 

MODEL IDENTIFICATION 

1
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• Surrogate subset model: 
 
 
 

• Mixed-integer surrogate subset model: 
 
 
 

• Generalized best subset problem mixed-integer formulation: 
 
 
 
 
 

BEST SUBSET METHOD 
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• This model is solved for increasing values of T until the AICc 

worsens 

FINAL BEST SUBSET MODEL 
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ADAPTIVE SAMPLING 

Model 
error 

New 
surrogate 

model 

Black-box 
function 

Surrogate 
model 

Data 
points 

Model i Sample Points Model i+1 

New sample 
point 

• Goal: Choose new locations to sample that can best be used 
to improve the model 

 

• Solution: Search the problem space for areas of model 
inconsistency or model mismatch 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 

ADAPTIVE SAMPLING 

Surrogate model 

1
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• Surrogate generation methods have been implemented into 
a package:  

ALAMO 
(Automated Learning of Algebraic Models for Optimization) 

 

• Modeling methods compared 
– MIP – Proposed methodology 
– EBS – Exhaustive best subset method  

• Note: due to high CPU times this was only tested on smaller problems 
– LASSO – The lasso regularization 
– OLR – Ordinary least-squares regression 

 

• Sampling methods compared 
– DFO – Proposed error maximization technique 
– SLH – Single Latin hypercube (no feedback) 

COMPUTATIONAL TESTING 
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• Two and three input black-box functions randomly chosen 
basis functions available to the algorithms with varying 
complexity from 2 to 10 terms 
 

• Basis functions allowed: 

DESCRIPTION – TEST SET A 
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RESULTS – TEST SET A 

Model accuracy Function evaluations 

45 test problems, repeated 5 times, tested against 1000 independent data points 
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 MODEL COMPLEXITY – TEST SET A 
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• Two input black-box functions with basis functions 
unavailable to the algorithms with 
 

DESCRIPTION – TEST SET B 
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RESULTS – TEST SET B 

Model accuracy Function evaluations 

12 test problems, repeated 5 times, tested against 1000 independent data points 
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MODEL COMPLEXITY – TEST SET B 
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Model outputs (13 total) 
Geometry required (2) 
Operating condition required (1) 
Gas mole fractions (2) 
Solid compositions (2) 
Flow rates (2) 
Outlet temperatures (3) 
Design constraint (1) 

BUBBLING FLUIDIZED BED 

• Model inputs (14 total) 
– Geometry (3) 
– Operating conditions (4) 
– Gas mole fractions (2) 
– Solid compositions (2) 
– Flow rates (4) 

Bubbling fluidized bed adsorber diagram 
Outlet gas Solid feed 

CO2 rich gas CO2 rich solid outlet 

Cooling 
water 

Model created by Andrew Lee at the National Energy 
and Technology Laboratory 
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ADAPTIVE SAMPLING 
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Iterations
FGas_out Gas_In_P THX_out Tgas_out Tsorb_out
dt gamma_out lp vtr xH2O_ads_out
xHCO3_ads_out zCO2_gas_out zH2O_gas_out

Progression of mean error through the algorithm 

Initial data set: 
137 pts 

Final data set: 
261  
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EXAMPLE MODELS 
Solid feed 

CO2 rich gas 

Cooling 
water 
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• The algorithm we developed is able to model black-box 
functions for use in optimization such that the models are 
 Accurate 
 Tractable in an optimization framework (low-complexity models) 
 Generated from a minimal number of function evaluations 

• Surrogate models can then be incorporated within a 
optimization framework with global objective functions and 
additional constraints 

• http://archimedes.cheme.cmu.edu/?q=alamo 

 

CONCLUSIONS 

Automated Learning of Algebraic Models for Optimization 

ALAMO 

http://archimedes.cheme.cmu.edu/?q=alamo�


26 

This presentation was prepared as an account of work 
sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, 
nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its 
use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government 
or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

Disclaimer 
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