$$\begin{array}{c} z = f(x) \\ \hline \\ s.t. \quad g(x) = 0 \end{array} \end{array}$$

Derivative-Free Optimization Enhanced-Surrogate Models for Energy Systems Optimization

Nick Sahinidis^{1,2}, Alison Cozad¹, and David Miller²

¹ Department of Chemical Engineering, Carnegie Mellon University ² National Energy and Technology Laboratory

PROBLEM STATEMENT

- Challenges:
 - Lack of an algebraic model
 - Computationally costly simulations
 - Often noisy function evaluations
 - Scarcity of fully robust simulations

SIMULATION-BASED METHODS

Direct methods

- Estimated gradient based
 - Finite element, perturbation analysis, etc.
- Derivative-free optimization (DFO)
 - Local/global
 - Stochastic/deterministic

Indirect methods

- What is modeled?
 - Objective, objective + constraints, disaggregated system
- Type of model
 - Linear/nonlinear
 - Simple/Complex
 - Algebraic/black-box
- Optimizer
 - Derivative/derivative-free

RECENT WORK IN CHEMICAL ENG

Carnegie Mellon University

PROCESS DISAGGREGATION

MODELING PROBLEM STATEMENT

• Build a model of output variables *z* as a function of input variables *x* over a specified interval

Independent variables:

Operating conditions, inlet flow properties, unit geometry

Dependent variables:

Efficiency, outlet flow conditions, conversions, heat flow, etc.

MODELING PROBLEM STATEMENT

- Model questions:
 - What is the functional form of the model?
 - How complex of a model is needed?
 - Will this be tractable in an algebraic optimization framework?
- Sampling questions:
 - How many sample points are needed to define an accurate model?
 - Where should these points be sampled?
- Desired model traits:
 - ✓ Accurate
 - ✓ Tractable in algebraic optimization: Simple functional forms
 - $\checkmark\,$ Generated from a minimal data set

ALGORITHMIC FLOWSHEET

ALGORITHMIC FLOWSHEET

DESIGN OF EXPERIMENTS

• Goal: To generate an initial set of input variables to evenly sample the problem space $\langle r^i \rangle$

 $egin{array}{cccccccccc} x = egin{pmatrix} x^1 & x^2 & \cdots & x^i & \cdots & x^N \end{pmatrix} & x^i = egin{pmatrix} x^i_1 \ x^i_2 \ dots \ x^i_d \ dots \ x^i_D \end{pmatrix} \end{array}$

• Latin hypercube design of experiments [McKay et al., 79]

INITIAL SAMPLING

• After running the design of experiments, we will evaluate the black-box function to determine each z^i

ALGORITHMIC FLOWSHEET

MODEL COMPLEXITY TRADEOFF

Model complexity

MODEL IDENTIFICATION

- Goal: Identify the functional form and complexity of the surrogate models z = f(x)
- Functional form:
 - General functional form is unknown: Our method will identify models with combinations of simple basis functions

Category		$X_j(x)$		
I.	Polynomial	$\left(x_{d} ight)^{lpha}$		
II.	Multinomial	$\prod_{d\in\mathcal{D}'\subseteq\mathcal{D}} \left(x_d\right)^{\alpha_d}$		
III.	Exponential and loga- rithmic forms	$\exp\left(rac{x_d}{\gamma} ight)^lpha, \log\left(rac{x_d}{\gamma} ight)^lpha$		
IV.	Expected bases	From experience, simple inspec- tion, physical phenomena, etc.		

SURROGATE MODEL

• Surrogate model can have the form

$$\hat{z} = \sum_{j \in \mathcal{B}} \beta_j X_j(x)$$

• Low-complexity desired surrogate form

$$\hat{z} = \sum_{j \in \mathcal{S}} \beta_j X_j(x)$$

where $\mathcal{S} \subseteq \mathcal{B}$

- \mathcal{S} is chosen to
 - Reduce overfitting
 - Achieve surrogate simplicity for a tractable final optimization model

MODEL REDUCTION TECHNIQUES

• Qualitative tradeoffs of model reduction methods

Best subset methods

• Enumerate all possible subsets

Regularized regression techniques

• Penalize the least squares objective using the magnitude of the regressors

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63] Forward selection [Hamaker, 62]

CPU modeling cos

BEST SUBSET METHOD

• Generalized best subset problem:

 $\min_{\mathcal{S}, \beta} \quad \Phi(\mathcal{S}, \beta) \ ext{s.t.} \quad \mathcal{S} \subseteq \mathcal{B}$

where $\Phi(S,\beta)$ is a goodness of fit measure for the subset of basis function, S, and regression coefficients, β .

BEST SUBSET METHOD

• Surrogate subset model:

$$\hat{z}(x) = \sum_{j \in \mathcal{S}} eta_j X_j(x)$$

• Mixed-integer surrogate subset model:

$$\hat{z}(x) = \sum_{oldsymbol{j}\in\mathcal{B}} \left(y_{oldsymbol{j}}eta_{oldsymbol{j}}
ight) X_{oldsymbol{j}}(x) \quad ext{ such that } \begin{array}{cc} y_{j} = 1 & j \in \mathcal{S} \ y_{j} = 0 & j \notin \mathcal{S} \end{array}$$

• Generalized best subset problem mixed-integer formulation:

$$egin{array}{ll} \min_{eta,y} & \Phi(eta,y) \ {
m s.t.} & y_j \in \{0,1\} \end{array}$$

NESTED MIXED-INTEGER PROBLEM

• Corrected Akaike information criterion (AICc) [Hurvich and Tsai, 93]

$$\min_{T \in \{1,...,T^u\}} \qquad N \log \left(\frac{1}{N} \sum_{i=1}^N \left(z_i - \sum_{j \in \mathcal{B}} (y_j \beta_j) X_{ij} \right)^2 \right) + 2T + \frac{2T (T+1)}{N - T - 1}$$
s.t.
$$\min_{\beta, y} \qquad \sum_{i=1}^N \left(z_i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right)^2$$
s.t.
$$\sum_{j \in \mathcal{B}} y_j = T$$

$$\beta^l y_j \le \beta_j \le \beta^u y_j \qquad j \in \mathcal{B}$$

$$y_j = \{0, 1\} \qquad j \in \mathcal{B}$$

- a) Model sizing
- b) Basis and coefficient selection

FINAL BEST SUBSET MODEL

• This model is solved for increasing values of *T* until the *AICc* worsens

ALGORITHMIC FLOWSHEET

ADAPTIVE SAMPLING

- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find a point that maximizes the model error with respect to the independent variables

ERROR MAXIMIZATION SAMPLING

- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find a point that maximizes the model error with respect to the independent variables

 Optimized using a black-box or derivative-free solver (SNOBFIT) [Huyer and Neumaier, 08]

ERROR MAXIMIZATION SAMPLING

- Information gained using error maximization sampling:
 - 1. New data point locations that will be used to better train the next iteration's surrogate model
 - 2. Conservative estimate of the true model error
 - Defines a stopping criterion
 - Estimates the final model error

COMPUTATIONAL TESTING

• Surrogate generation methods have been implemented into a package:

ALAMO

(Automated Learning of Algebraic Models for Optimization)

- Modeling methods compared
 - MIP Proposed methodology
 - EBS Exhaustive best subset method
 - Note: due to high CPU times this was only tested on smaller problems
 - LASSO The lasso regularization
 - OLR Ordinary least-squares regression
- Sampling methods compared
 - DFO Proposed error maximization technique
 - SLH Single Latin hypercube (no feedback)

DESCRIPTION – TEST SET A

- Two- and three-input black-box functions randomly chosen basis functions available to the algorithms with varying complexity from 2 to 10 terms
- Basis functions allowed:

Category		$X_j(x)$	Parameters used		
I.	Polynomial	$(x_d)^{lpha}$	$lpha = \{\pm 3, \pm 2, \pm 1, \pm 0.5\}$		
II.	Multinomial	$\prod_{d\in\mathcal{D}'\subset\mathcal{D}} (x_d)^{\alpha_d}$	for $ \mathcal{D}' = 2$ $\alpha = \{\pm 2, \pm 1, \pm 0.5\}$		
			$\text{for } \mathcal{D}' = 3 \alpha = \{\pm 1\}$		
III.	Exponential and logarithmic forms	$\exp\left(rac{x_d}{\gamma} ight)^lpha, \log\left(rac{x_d}{\gamma} ight)^lpha$	$lpha=1, \ \gamma=1$		

True basis function coefficients were randomly chosen from a uniform distribution where $\beta \in [-1, 1]$.

RESULTS – TEST SET A

45 test problems, repeated 5 times, tested against 1000 independent data points

MODEL COMPLEXITY – TEST SET A

No. in- puts	No. true terms	MIP/ DFO	MIP/ SLH	EBS/ DFO	EBS/ SLH	LASSO/ DFO	LASSO/ SLH	OLR/ DFO	OLR/ SLH
2	2	2	[2, 2]	2	2	[6, 8]	[6, 11]	[12, 15]	[12, 15]
2	3	3	3	3	3	[5,12]	[5,10]	[12, 14]	[12, 14]
2	4	[3, 4]	[3, 4]	[3, 4]	[3, 4]	[8, 11]	[8, 10]	[11, 12]	[11, 12]
2	5	[2, 4]	[2, 4]	[2, 5]	[2, 5]	[3, 12]	[4, 11]	[10, 16]	[10, 16]
2	6	[5, 6]	[6, 6]	[5, 6]	[6, 6]	[7, 10]	[6, 7]	[11, 13]	[11, 13]
2	7	[4, 6]	[4, 6]	[4, 7]	[4, 7]	[7, 11]	[6, 12]	[8, 13]	[8, 13]
2	8	[4, 5]	[5, 6]	[4, 5]	[5, 6]	[6, 8]	[6, 9]	[10, 15]	[10, 15]
2	9	[4, 6]	[4, 6]	NA	NA	[6, 14]	[7, 12]	[10, 17]	[10, 17]
2	10	[4, 8]	[4, 8]	NA	NA	[5, 14]	[7, 14]	[10, 14]	[10, 14]
3	2	[2, 3]	[2, 3]	NA	NA	[6, 12]	[7, 13]	[27, 29]	[27, 29]
3	3	[3, 3]	[3, 3]	NA	NA	[8, 16]	[7, 15]	[19, 22]	[19, 22]
3	4	4	[3, 4]	$\mathbf{N}\mathbf{A}$	NA	[10, 13]	[9, 10]	[16,21]	[16, 21]
3	5	5	5	NA	NA	[11, 17]	[9, 15]	[15, 23]	[15, 23]
3	6	[5, 6]	[6, 6]	NA	NA	[9, 18]	[10, 13]	[15, 26]	[15, 26]
3	7	7	[7, 8]	NA	NA	[10, 22]	[10, 22]	22	22

DESCRIPTION – TEST SET B

• Two-input black-box functions with basis functions unavailable to the algorithms with

Function type	Functional form
Ι	$z(x) = \beta x_i^{lpha} \exp(x_j)$
II	$z(x) = eta x_i^lpha \log(x_j)$
III	$z(x)=eta x_1^lpha x_2^ u$
IV	$z(x)=rac{eta}{\gamma+x_i^lpha}$

with true parameters chosen from a uniform distribution where $\beta \in [-1, 1]$, $\alpha, \nu \in [-3, 3], \gamma \in [-5, 5]$, and $i, j \in \{1, 2\}$.

RESULTS – TEST SET B

12 test problems, repeated 5 times, tested against 1000 independent data points

MODEL COMPLEXITY – TEST SET B

True func- tion type	Function ID	MIP/ DFO	MIP/ SLH	LASSO/ DFO	LASSO/ SLH	OLR/ DFO	OLR/ SLH
Ι	a	5	5	[3,5]	[4, 9]	[6, 17]	[6, 17]
Ι	b	[4, 10]	[4, 10]	[10, 14]	[5, 8]	[8, 17]	[8, 17]
Ι	с	[3,10]	[6, 9]	[8, 9]	[4,10]	[13, 17]	[13,17]
II	a	[4, 6]	[4, 10]	[8, 15]	[7, 9]	[15, 19]	[15, 19]
Π	b	[1, 7]	[1, 9]	[13, 16]	[11, 17]	[13, 30]	[13, 30]
II	с	[5, 12]	[5, 12]	[9, 13]	[9, 16]	[9, 19]	[9, 19]
III	a	[3, 4]	[1, 4]	[2,5]	[2, 5]	[9, 20]	[9, 20]
III	b	4	[1, 4]	5	5	[9, 20]	[9, 20]
III	с	[3, 4]	[3, 4]	[5, 8]	[5, 9]	[18, 24]	[18, 24]
\mathbf{IV}	a	[7, 8]	[4, 10]	[8, 17]	[11, 18]	[13,19]	[13, 19]
IV	b	[8, 9]	[9, 10]	[8, 12]	[10, 14]	[9, 17]	[9,17]
IV	с	[6, 9]	[9, 10]	[5,13]	[4, 12]	[13, 15]	[13, 15]

TEST CASE: CUMENE PRODUCTION

Cumene production simulation is form the Aspen Plus[®] Library

GENERATING THE SURROGATES

- Maximum error found at each iteration may increase
 - Due to the derivative-free solver is given more information at each iteration

CARBON CAPTURE OPTIMIZATION

• **Problem statement:**

Capture 90% of CO₂ from a 350MW power plant's post combustion flue gas with minimal increase in the cost of electricity

- Design considerations:
 - Capture technology
 - Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc.
 - Number of reactors
 - Reactor configuration and geometry
 - Operating conditions

BUBBLING FLUIDIZED BED

- Model inputs (14 total)
 - Geometry (3)
 - Operating conditions (4)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (4)

Model created by Andrew Lee at the National Energy and Technology Laboratory

- Model outputs (13 total)
 - Geometry required (2)
 - Operating condition required (1)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - = Flow rates (2)
 - Outlet temperatures (3)
 - = Design constraint (1)

ADAPTIVE SAMPLING

Progression of mean error through the algorithm

EXAMPLE MODELS

 $P_{in} = \frac{1.0 P_{out} + 0.0231 L_b - 0.0187 \ln(0.167 L_b) - 0.00626 \ln(0.667 v_{gi}) - \frac{51.1 \text{ xHCO3}_{in}^{ads}}{F_{in}^{gas}}$

$$T_{\rm out}^{\rm sorb} = 1.0 \, {\rm T}_{\rm in}^{\rm gas} - \frac{\left(1.77 \cdot 10^{-10}\right) \, {\rm NX}^2}{\gamma^2} - \frac{3.46}{{\rm NX} \, {\rm T}_{\rm in}^{\rm gas} \, {\rm T}_{\rm sorb}^{\rm sorb}} + \frac{1.17 \cdot 10^4}{{\rm F}^{\rm sorb} \, {\rm NX} \, {\rm xH2O}_{\rm in}^{\rm ads}}$$

$$\begin{array}{ll} F_{\rm out}^{\rm gas} & = & 0.797 \, {\rm F}_{\rm in}^{\rm gas} - \frac{9.75 \, {\rm T}_{\rm in}^{\rm sorb}}{\gamma} - 0.77 \, {\rm F}_{\rm in}^{\rm gas} \, {\rm xCO2}_{\rm in}^{\rm gas} + 0.00465 \, {\rm F}_{\rm in}^{\rm gas} \, {\rm T}_{\rm in}^{\rm sorb} - \\ & 0.0181 \, {\rm F}_{\rm in}^{\rm gas} \, {\rm T}_{\rm in}^{\rm sorb} \, {\rm xH2O}_{\rm in}^{\rm gas} \end{array}$$

Carnegie Mellon University

SUPERSTRUCTURE OPTIMIZATION

SUPERSTRUCTURE OPTIMIZATION

BRANCH-AND-REDUCE

BARON HISTORY

1991-93	Duality-based range reduction
	Nonlinear constraint propagation
1994-95	Branch-and-bound system
	Finite algorithm for separable concave minimization
1996-97	Parser for factorable programs; nonlinear relaxations
	Links to MINOS and OSL
1997-98	Polyhedral relaxations; Link to CPLEX
	Compressed data storage, tree traversal,
2002	Under GAMS
2004	Branch-and-cut
2005-07	Local search; memory management,
2009	Multi-term envelopes
2010-11	Multi-variate and multi-constraint envelopes/relaxations
	Links to CLP and IPOPT

CONVEXIFICATION OF MULTILINEARS

Decompose multilinear functions into low-dimensional dense components that are convexified individually

 $L(x) = x_1 x_2 + x_1 x_3 x_4 + x_2 x_3 + x_2 x_4 + x_2 x_5 + x_4 x_6 + x_5 x_6 + x_5 x_7 x_8$

 $L_{1}(x) = x_{1}x_{2} + x_{1}x_{3}x_{4} + x_{2}x_{3} + x_{2}x_{4}$ $L_{2}(x) = x_{2}x_{4} + x_{2}x_{5} + x_{4}x_{6} + x_{5}x_{6}, \ L_{3}(x) = x_{5}x_{7}x_{8}$

Carnegie Mellon University

COMPARISONS WITH OTHER CODES

Test problems from http://helios.princeton.edu/GloMIQO/test_suite.html#Computational%20Geometry

COMPARISONS WITH GIOMIQO ON 136 QCQPs

Test problems from Bao et al. (2009)

PRELIMINARY RESULTS ON MINLP

CONCLUSIONS

- The algorithm we developed is able to model black-box functions for use in optimization such that the models are
 - ✓ Accurate
 - ✓ Tractable in an optimization framework (low-complexity models)
 - ✓ Generated from a minimal number of function evaluations
- Surrogate models can then be incorporated within a optimization framework flexible objective functions and additional constraints

<u>A</u>utomated <u>L</u>earning of <u>A</u>lgebraic <u>M</u>odels for <u>O</u>ptimization

$$= f(x) / \implies \min_{x \in I} f(x) / \underset{x \in I}{ = 0 }$$