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PROBLEM STATEMENT

min f(z)
s.t. g(x)=0
( ) ( )
Process f(z
T - simulation g(x)
. J

e Challenges:
— Lack of an algebraic model
— Computationally costly simulations
— Often noisy function evaluations
— Scarcity of fully robust simulations
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SIMULATION-BASED METHODS

Direct methods Indirect methods

[ Simulator ] M [ Modeler H Optimizer]

* Estimated gradient based

What is modeled?

Simulator

— Finite element, perturbation analysis, — Objective, objective + constraints,
etc. disaggregated system
e Derivative-free optimization (DFO) e Type of model
— Local/global — Linear/nonlinear
— Stochastic/deterministic — Simple/Complex
— Algebraic/black-box
e Optimizer

— Derivative/derivative-free
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RECENT WORK IN CHEMICAL ENG
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PROCESS DISAGGREGATION

Simulation

Disaggregated blocks of
process unit(s)

Surrogate models of [ ) ] f ) [
blocks - hX) - f(¥) f3()
| |
Algebraic constraints Mass balances ] [ Design specs

Nonlinear program [ Algebraic model for optimization

Carnegie Mellon University




MODELING PROBLEM STATEMENT

e Build a model of output variables z as a function of input
variables X over a specified interval

(ml\ Process simulation (Zl\
T )

z e RP : : ; z € REK
deg<gn || == s = o 2= @
\on/ \2x/

A

Independent variables: Dependent variables:
Operating conditions, inlet flow Efficiency, outlet flow conditions,
properties, unit geometry conversions, heat flow, etc.
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MODELING PROBLEM STATEMENT

e Model questions:

— What is the functional form of the model?
— How complex of a model is needed?
— Will this be tractable in an algebraic optimization framework?

e Sampling questions:
— How many sample points are needed to define an accurate model?
— Where should these points be sampled?

* Desired model traits:
v’ Accurate
v’ Tractable in algebraic optimization: Simple functional forms
v Generated from a minimal data set
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ALGORITHMIC FLOWSHEET
( Start )

Initial sampling

Build surrogate
model

Update training

AAata ont
uaa ol

Adaptive sampling

false
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ALGORITHMIC FLOWSHEET

Initial sampling




DESIGN OF EXPERIMENTS

 Goal: To generate an initial set of input variables to evenly
sample the problem space

= (z' 22

e Latin hypercube design of experiments [McKay et al., 79]

Lz, .

sadeassbasnsnnnsnnnnnnnnnnnnnnnnnnnnnnnnhannnn:
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INITIAL SAMPLING

e After running the design of experiments, we will evaluate
the black-box function to determine each 7

x:(xl 3;2 .« .0 a:'z .« .0 xN)

Process simulation

Initial
= training
set
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ALGORITHMIC FLOWSHEET

Build surrogate
model




MODEL COMPLEXITY TRADEOFF

Kriging [Krige, 63]
Artificial neural networks [McCulloch-Pitts, 43]
Radial basis functions [Buhman, 00]

>

Preferred f =~
region §

Model accuracy

Linear response surface

>
Model complexity
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MODEL IDENTIFICATION

e Goal: Identify the functional form and complexity of the
surrogate models z = f(x)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(x)

I Polynomial (zq)®

11. Multinomial H (:,cd)“""
deD'CD

III. Exponential and loga- exp (%)a, log (%}i)a
rithmic forms

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.

Carnegie Mellon University
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SURROGATE MODEL

e Surrogate model can have the form

2= B;X;(x)
JjEB

 Low-complexity desired surrogate form

2= B;X;(x)
JjES
where S C B

:- -LA-AI‘ A
e S ischosento

— Reduce overfitting
— Achieve surrogate simplicity for a tractable final optimization model

Carnegie Mellon University

15



MODEL REDUCTION TECHNIQUES

e Qualitative tradeoffs of
model reduction methods

Best subset methods
* Enumerate all possible
subsets

Regularized regression techniques
* Penalize the least squares objective using the
magnitude of the regressors

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63]
Forward selection [Hamaker, 62]
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BEST SUBSET METHOD

 Generalized best subset problem:

min ®(S, B)
st. SCB

where ®(S, B) is a goodness of fit measure for the subset of
basis function, S, and regression coefficients, 5.
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BEST SUBSET METHOD

e Surrogate subset model:

2z) =) BiXi(=z)

JjES

e Mixed-integer surrogate subset model:

20) = 3 (i) Xyla) b that v =1 jeS

* Generalized best subset problem mixed-integer formulation:

min ®(f4,y)
By

s.t. y; €{0,1}

Carnegie Mellon University
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NESTED MIXED-INTEGER PROBLEM

e Corrected Akaike information criterion (AlCc) [Hurvich and Tsai, 93]

-----

i=1 jeB
8.t Zyj =T
jeB
Bly; < By < By jEB
y; = {0,1} jeB

a) Model sizing
b) Basis and coefficient selection
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FINAL BEST SUBSET MODEL

N
min SE = Z 2; — Z’Binj
i=1 jEB
s.t. Zyj =T
jEB
N
—U(l—yj)SZXij zi_Z/Binj SU(I—’yj) jeB
=1 JjeB
Bly; < B; < By; jeB
y; € 10,1} jeB
6_7 € [ﬁ;: ﬁ?] jeB

* This model is solved for increasing values of T until the AlCc
worsens
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ALGORITHMIC FLOWSHEET

Adaptive sampling




ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find a point that maximizes
the model error with respect to the independent variables

Model i Sample Points Model i+1

Surrogate New

surrogate

model

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Black-box New sgmple
function point

&M W
Maximizat\o® €ouild mode
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ERROR MAXIMIZATION SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find a point that maximizes
the model error with respect to the independent variables

Surrogate model
o (z(x) - z({) 2
z z(x)

— Optimized using a black-box or derivative-free solver (SNOBFIT) [Huyer and
Neumaier, 08]

Carnegie Mellon University
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ERROR MAXIMIZATION SAMPLING

* Information gained using error maximization
sampling:
1. New data point locations that will be used to better
train the next iteration’s surrogate model

2. Conservative estimate of the true model error
* Defines a stopping criterion
» Estimates the final model error

Carnegie Mellon University
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COMPUTATIONAL TESTING

e Surrogate generation methods have been implemented into
a package:
ALAMO

(Automated Learning of Algebraic Models for Optimization)

e Modeling methods compared

— MIP - Proposed methodology

— EBS — Exhaustive best subset method
* Note: due to high CPU times this was only tested on smaller problems

— LASSO - The lasso regularization
— OLR - Ordinary least-squares regression

e Sampling methods compared
— DFO - Proposed error maximization technique
— SLH - Single Latin hypercube (no feedback)

Carnegie Mellon University
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DESCRIPTION — TEST SET A

 Two- and three-input black-box functions randomly chosen
basis functions available to the algorithms with varying
complexity from 2 to 10 terms

 Basis functions allowed:

Category X,;(z) Parameters used

I.  Polynomial (za)™ o = {£3,42,+1, £0.5}

II.  Multinomial I @a* for [D'| =2 a= {£2,+1,+0.5}
deD'CD

for |D'|=3 a={£1}

[ o
III. Exponential exp (%‘1) . log (%‘L) a=1,y=1
and logarithmic
forms

True basis function coefficients were randomly chosen from a uniform distri-
bution where 8 € [—1, 1].

Carnegie Mellon University
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RESULTS — TEST SET A

Model accuracy Function evaluations
' 1.0

<
fes]

<
o

e
»
L

Fraction of problems solved
Fraction of problems solved

. p — MIP/DFO
--= MIP/SLH

- — LASSO/DFO 02 -

' --- LASSO/SLH l: — MIP/DFO

— OLR/DFO — LASSO/DFO
--- OLR/SLH — OLR/DFO

0.0 - : : : | 0.0 . !

0 0.002 0.004 0.006 0.008 0.01 0 10 20 30 40

45 test problems, repeated 5 times, tested against 1000 independent data points
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MODEL COMPLEXITY — TEST SET A

No. in- No. MIP/  MIP/ EBS/ EBS/ LASSO/ LASSO/ OLR/ OLR/
puts true DFO SLH DFO SLH DFO SLH DFO SLH
terms
2 2 2 2, 2] 2 2 [6, 8] [6,11]  [12,15] [12, 15]
2 3 3 3 3 3 [5, 12} [5, 10] [12, 14] [127 14]
2 4 3.4 (3,4  [34  [3,4  [811] [8,10] [11,12] [11,12]
2 5 [2, 4] [2, 4] [2, 5] [2, 5] [3, 12] [4, 11] [10, 16] [10T 16]
2 6 [5, 6] [6, 6] [5, 6] [6, 6] [7, 10} [6, 7] [11, 13] [ll, 13]
2 7 [4, 6] [4, 6] [4, 7] [4, 7] [7,11]  [6,12]  [8,13]  [8, 13]
2 8 [4, 5] [5, 6] 4, 5] [5, 6] [6, 8] [6, 9] [10, 15]  [10, 15]
2 9 [4, 6] [4, 6] NA NA [6, 14] [7, 12] [10, 17] [10, 17]
2 10 [4, 8 [4, 8] NA NA [5,14]  [7,14]  [10, 14] [10, 14]
3 2 [2, 3] [2, 3] NA NA [6, 12] [7, 13] [27, 29] [27T 29]
3 3 [3, 3] [3, 3] NA NA [8,16]  [7,15]  [19,22] [19, 22|
3 4 4 [3, 4] NA NA [10, 13] [9,10]  [16, 21] [16, 21]
3 5} 9 ) NA NA [11, 17] [9, 15] [15, 23] [15, 23]
3 6 [5, 6] [6, 6] NA NA [97 18] [10, 13] [157 26] [15, 26]
3 7 7 [7, 8] NA NA [10, 22] [10, 22] 22 22
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DESCRIPTION — TEST SET B

 Two-input black-box functions with basis functions
unavailable to the algorithms with

Function type Functional form

I z(z) = Bxf exp(x;)

IT z(z) = P log(z;)

111 z(z) = Bxfxy
B

v AR =S s

with true parameters chosen from a uniform distribution where 8 € [—1, 1],
o, v e [-3,3],y€[-5,5], and i, 7 € {1, 2}.

Carnegie Mellon University
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RESULTS — TEST SET B

Model accuracy Function evaluations
1.0 + I 1.0 I

= —
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Fraction of problems solved
Fraction of problems solved

04 - 0.4 -
— MIP/DFO
--- MIP/SLH

02 — LASSO/DFO 02 |

' --- LASSO/SLH ‘ — MIP/DFO

— OLR/DFO — LASSO/DFO

0.0 . : __ - OLR/SIH | 0o 1 I — OLR/DFO

0 0.002 0.004 0.006 0.008 0.01 - 0 10 20 30 40
Normalized test error Function evaluations used in training set

12 test problems, repeated 5 times, tested against 1000 independent data points
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MODEL COMPLEXITY — TEST SET B

True Function MIP/ MIP/ LASS0O/ LASSO/ OLR/  OLR/
func- ID DFO SLH DFO SLH DFO SLH
tion

type

I a 5 5 3,5] [49 [617 [6, 17]
I b 4,10 [4,10] [10,14] [5,8 [, 17]  [8, 17]
I ¢ 3,100 [6,9] [8,9  [410 [13,17 [13, 17
1 a 4,6  [4,100 [8,15 [7,9]  [15,19] [15, 19]
1 b ,7 (1,9 [13,16 [11,17] [13, 301 13, 30
I ¢ 5,12] [5,12] [9,13] [9,16] [9,19] [9, 19]
I a 3,4  [1,4 25 [25 9, 20] 9, 20]
I b 4 1,4 5 5 0,20 [0, 20]
I ¢ 3,4 3.4 [5.8 [5,9  [18 24 [18, 24
v a 7,8  [4,10] [8,17] [11,18] [13,19] [13, 19]
v b 8,9 9,10 [8,12] [10,14] [9,17] [9, 17]
v ¢ 6.9  [9.10] [5.13] [4,12] [13,15 [13, 15]

Carnegie Mellon University
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TEST CASE: CUMENE PRODUCTION

Generate Models: z©(T™°, P) = f1(T*P, P)
Treact (TP PY = fo(T°P, P)
F™(T*P, P} = f3(T"®, P)

Over the Range: 100°F < T < 250°F
0.82atm <P < 1.36 atm

Cumene production simulation is form the Aspen Plus® Library
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GENERATING THE SURROGATES

14% - Initial data set: 3 points —xC
Final data set: 23 points —Treact
12% 1 —Frec
S 10% -
o
S
= 8% -
: -
E 6%
E ]
g 4% - L S
2% -
0% ‘ ‘ ; m—
1 2 3 4 5
| terations

e  Maximum error found at each iteration may increase

— Due to the derivative-free solver is given more information at each iteration

Carnegie Mellon University
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CARBON CAPTURE OPTIMIZATION

* Problem statement:

Capture 90% of CO, from a 350MW power plant’s post combustion flue gas with
minimal increase in the cost of electricity

650 MW
Coal fired power
plant

CO, rich
flue gas

CO, poor
flue gas

Adsorber
Regenerator

 Design considerations:

— Capture technology
e Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc.
— Number of reactors
— Reactor configuration and geometry
— Operating conditions

Carnegie Mellon University
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BUBBLING FLUIDIZED BED

Outlet gast Solid feed
!
.
Cooling %
water < —
CO,rich gas1 4 CO;,rich solid outlet
e Model inputs (14 total) @ Model outputs (13 total)
— Geometry (3) = Geometry required (2)
— Operating conditions (4) = Operating condition required (1)
— Gas mole fractions (2) = Gas mole fractions (2)
— Solid compositions (2) = Solid compositions (2)
— Flow rates (4) = Flow rates (2)

= Qutlet temperatures (3)

Model created by Andrew Lee at the National Energy = Design constraint (1)
and Technology Laboratory
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ADAPTIVE SAMPLING

Progression of mean error through the algorithm

16%
o
% 12% -
)
=
T
D 8% A
5
£
= 4% - Initial data set:
L 137 pts
Final data set:
0% 261
1
| terations
== FGas out = =Gas In P = THX out —=Tgas_out Tsorb_out
- =t == =gamma_out = =|p - =Vvtr = xH20 ads out
= XHCO3 ads out ====zCO2 gas out ===zH20 gas out
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EXAMPLE MODELS

fens Solid feed

out

Cooling ' %
water < —
CO,rich gas1piﬂl 1T(s)$lrtb
Pin = 1.0Pgy+0.0231 Ly —0.0187 In{0.167 L) —0.00626 In(0.667 v;) —
51.1xHCO32
Fin
b _ gas (L77-1071°) NX* 346 1.17 - 10*
21331; — 1.0 Tin 5 a5 5 _|—
7 NXTH* 5o Forb NX xH20%%
gas gas 9.75 T?grb gas gas gas b
F&° = 0.797F%* - — 0.77F% xCO28> + 0.00465 FE* T5orP —

,),
0.0181 F£° T5o™® xH205:®

Carnegie Mellon University
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SUPERSTRUCTURE OPTIMIZATION

Lleaned gas & 4_ Tf
: :g \ = @
Solid sorbent |
. stream — ?;
Solid sorbent CO, . = @2 ?:E
capture _.AS : o
— e = |
______ —rn )
I Other | _ ] <—T‘
| capture | — e
' trains : ‘-E = § d4

e = -

Flue gasfrom:/_T

power plant \_’&_
arnegie Mellon Universit

~ — Cooling water :
. —> Steam |
. — \Work




SUPERSTRUCTURE OPTIMIZATION

Add the set of
- surrogate models
generated for each
adsorber
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BRANCH-AND-REDUCE

Search Tree

Range Reduction Discard o
A Iscar Finiteness

Partition
B

Convexification
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1991-93

1994-95

1996-97

1997-98

2002

2004

2005-07

2009
2010-11
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BARON HISTORY

Duality-based range reduction

Nonlinear constraint propagation

Branch-and-bound system

Finite algorithm for separable concave minimization
Parser for factorable programs; nonlinear relaxations
Links to MINOS and OSL

Polyhedral relaxations; Link to CPLEX

Compressed data storage, tree traversal, ...

Under GAMS

Branch-and-cut

Local search; memory management, ...

Multi-term envelopes

Multi-variate and multi-constraint envelopes/relaxations
Links to CLP and IPOPT

41



CONVEXIFICATION OF MULTILINEARS

Decompose multilinear functions into low-dimensional dense
components that are convexified individually

L(X) = X0 + XXX, + X X5 F X X+ Xo X + Xy X5 + X Xs + XX X

1 2 5 S 8
Sum-
>< ‘ I\ ‘ decomposable \

3 4 6 /
12 2 w1 |
‘ >< | Adaptive X ‘ |
3 4 4 6 edge-cover 3 4 6

L1 (X) = X + XXX, + 50X + XX,

Ly (%) =30% 4% + X%+ 5%, L) =X00%




COMPARISONS WITH OTHER CODES

Perfornance Profile

188 &

Percent Of Hodels Solwved

28 BARON —+—
COTINCOUENHE —<—
LINDOGLOBAL —#%—

18 SCIP —E—
GLOHIQO
. . CAN_SOLVE —&—
H I I I I I I 11 I I I I I I I I I I I I I 1
1 18 160 1668

Tine Factor

Test problems from
http://helios.princeton.edu/GloMIQO/test_suite.html#Computational%20Geometry
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COMPARISONS WITH GloMIQO ON 136 QCQPs

nt Of Hodels Solwved

Perce

BAR182 ——
GLOHIQO ——
CAN_SOLYE —#—

38

1 18 168 16688

Test problems from Bao et al. (2009)
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PRELIMINARY RESULTS ON MINLP

« Cleaned gas

. SQ‘ ) e Regen.
_§ al | — T gas
—£h =

—————— I—‘
S Solid sorbent
| t | >
P e = @2 stream
I_ :cuu: _I Y
i ——
Flue gasfrom 1
power plant :&

~ — Cooling water :
. —> Steam |
. — \Work
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CONCLUSIONS

* The algorithm we developed is able to model black-box
functions for use in optimization such that the models are
v' Accurate
v’ Tractable in an optimization framework (low-complexity models)
v’ Generated from a minimal number of function evaluations

e Surrogate models can then be incorporated within a
optimization framework flexible objective functions and
additional constraints

ALAMO

Automated L earning of Algebraic M odels for Optimization

= f(=z) :
min f(x)
' = s.t. g(xz) =0
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