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PROBLEM STATEMENT

Process 
simulation

• Challenges:
– Lack of an algebraic model
– Computationally costly simulationsComputationally costly simulations
– Often noisy function evaluations
– Scarcity of fully robust simulations
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SIMULATION-BASED METHODS
Indirect methodsDirect methods

Simulator Optimizer Simulator Modeler Optimizer

• What is modeled?• Estimated gradient based • What is modeled?
– Objective, objective + constraints, 

disaggregated system

T f d l

• Estimated gradient based
– Finite element, perturbation analysis, 

etc.

D i ti f ti i ti (DFO) • Type of model
– Linear/nonlinear

– Simple/Complex

/

• Derivative-free optimization (DFO)
– Local/global

– Stochastic/deterministic

– Algebraic/black-box

• Optimizer
– Derivative/derivative-free
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RECENT WORK IN CHEMICAL ENG
Indirect methods

Simulator Modeler Optimizer

Kriging Neural nets Other

Full process

Kriging Neural nets Other

Michalopoulos et 

Palmer and Realff, 
2002
Huang et al., 2006 Palmer and Realff, 

Disaggregated

al., 2001
Huang et al., 006
Davis and 
Ierapetritou, 2012

2002

Disaggregated

Caballero and 
Grossmann, 2008

Henao and 
Maravelias, 2011
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PROCESS DISAGGREGATION

Si l iSimulation

Disaggregated blocks of 
i ( )

Surrogate models of

process unit(s)

Surrogate models of 
blocks f1(x) f3(x)f2(x)

Algebraic constraints Mass balances Design specs
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Nonlinear program Algebraic model for optimization



MODELING PROBLEM STATEMENT
• Build a model of output variables z as a function of input 

variables x over a specified intervalvariables x over a specified interval

Process simulationProcess simulation

Independent variables: Dependent variables:Independent variables:
Operating conditions, inlet flow 

properties, unit geometry

Dependent variables:
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc.
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MODELING PROBLEM STATEMENT

• Model questions:
Wh t i th f ti l f f th d l?– What is the functional form of the model?  

– How complex of a model is needed? 

– Will this be tractable in an algebraic optimization framework?t s be t actab e a a geb a c opt at o a e o

• Sampling questions:Sampling questions:
– How many sample points are needed to define an accurate model? 

– Where should these points be sampled?

• Desired model traits:
Accurate

Tractable in algebraic optimization:  Simple functional forms

Generated from a minimal data set
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Generated from a minimal data set



ALGORITHMIC FLOWSHEET
Start

Initial sampling

Build surrogate 
model

Update training 
data set

Adaptive sampling
data set

false Model

true

false Model 
converged?
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ALGORITHMIC FLOWSHEET
Start

Initial sampling

Build surrogate 
model

Update training 
data set

Adaptive sampling
data set

false Model

true

false Model 
converged?
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DESIGN OF EXPERIMENTS
• Goal: To generate an initial set of input variables to evenly 

sample the problem spacesample the problem space

• Latin hypercube design of experiments [McKay et al., 79]Latin hypercube design of experiments [McKay et al., 79]

Carnegie Mellon University 10



INITIAL SAMPLING
• After running the design of experiments, we will evaluate 

the black-box function to determine each zithe black box function to determine each z

Process simulation

Initial 
trainingtraining 
set
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ALGORITHMIC FLOWSHEET
Start

Initial sampling

Build surrogate 
model

Update training 
data set

Adaptive sampling
data set

false Model

true

false Model 
converged?
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MODEL COMPLEXITY TRADEOFF

Kriging [Krige, 63]
A tifi i l l t k [M C ll h Pi 43]Artificial neural networks [McCulloch-Pitts, 43]
Radial basis functions [Buhman, 00]
…
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Linear response surface

Model complexity
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MODEL IDENTIFICATION
• Goal: Identify the functional form and complexity of the 

surrogate modelssurrogate models

• Functional form: 
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions
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SURROGATE MODEL
• Surrogate model can have the form

• Low-complexity desired surrogate formLow-complexity desired surrogate form

• is chosen to• is chosen to
– Reduce overfitting

– Achieve surrogate simplicity for a tractable final optimization modelg p y p
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MODEL REDUCTION TECHNIQUES

• Qualitative tradeoffs of 
model reduction methodsmodel reduction methods

Best subset methodsBest subset methods
• Enumerate all possible 

subsets

Regularized regression techniques
• Penalize the least squares objective using the 

magnitude of the regressors

Backward elimination [Oosterhof 63]

Stepwise regression [Efroymson, 60]

magnitude of the regressors

Backward elimination [Oosterhof, 63] 
Forward selection [Hamaker, 62]
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BEST SUBSET METHOD
• Generalized best subset problem:
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BEST SUBSET METHOD
• Surrogate subset model:

• Mixed-integer surrogate subset model:

• Generalized best subset problem mixed-integer formulation:
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NESTED MIXED-INTEGER PROBLEM
• Corrected Akaike information criterion (AICc) [Hurvich and Tsai, 93]

a) Model sizing
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a) Model sizing
b) Basis and coefficient selection 



FINAL BEST SUBSET MODEL

• This model is solved for increasing values of T until the AICc
worsens
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worsens



ALGORITHMIC FLOWSHEET
Start

Initial sampling

Build surrogate 
model

Update training 
data set

Adaptive sampling
data set

false Model

true

false Model 
converged?
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ADAPTIVE SAMPLING
• Goal: Search the problem space for areas of model 

inconsistency or model mismatchinconsistency or model mismatch

• More succinctly, we are trying to find a point that maximizes 
the model error with respect to the independent variablesthe model error with respect to the independent variables

Model i Sample Points Model i+1

New 
surrogate 

Surrogate 
model

p

Model 
error

model

Black box

model

Data 
points

New sampleBlack-box 
function

New sample 
point
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ERROR MAXIMIZATION SAMPLING
• Goal: Search the problem space for areas of model 

inconsistency or model mismatchinconsistency or model mismatch

• More succinctly, we are trying to find a point that maximizes 
the model error with respect to the independent variablesthe model error with respect to the independent variables

Surrogate model

– Optimized using a black-box or derivative-free solver (SNOBFIT) [Huyer and 
Neumaier, 08]
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ERROR MAXIMIZATION SAMPLING
• Information gained using error maximization 

sampling:sampling:
1. New data point locations that will be used to better 

train the next iteration’s surrogate modeltrain the next iteration s surrogate model

2 Conservative estimate of the true model error2. Conservative estimate of the true model error
• Defines a stopping criterion

• Estimates the final model error
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COMPUTATIONAL TESTING
• Surrogate generation methods have been implemented into 

a package: p g
ALAMO

(Automated Learning of Algebraic Models for Optimization)

• Modeling methods compared
MIP P d th d l– MIP – Proposed methodology

– EBS – Exhaustive best subset method 
• Note: due to high CPU times this was only tested on smaller problemsg y p

– LASSO – The lasso regularization

– OLR – Ordinary least-squares regression

• Sampling methods compared
O d i i i h i
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– DFO – Proposed error maximization technique

– SLH – Single Latin hypercube (no feedback)



DESCRIPTION – TEST SET A
• Two- and three-input black-box functions randomly chosen 

basis functions available to the algorithms with varying g y g
complexity from 2 to 10 terms

• Basis functions allowed:
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RESULTS – TEST SET A

Model accuracy Function evaluations
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45 test problems, repeated 5 times, tested against 1000 independent data points



MODEL COMPLEXITY – TEST SET A
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DESCRIPTION – TEST SET B
• Two-input black-box functions with basis functions 

unavailable to the algorithms withg
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RESULTS – TEST SET B

Model accuracy Function evaluations

Carnegie Mellon University 30

12 test problems, repeated 5 times, tested against 1000 independent data points



MODEL COMPLEXITY – TEST SET B
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TEST CASE: CUMENE PRODUCTION

Benzene
PropylenePropylene

Cumene

Generate Models:

Over the Range:
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Cumene production simulation is form the Aspen Plus® Library



GENERATING THE SURROGATES
14% xC

Treact
Initial data set: 3  points
Final data set:  23 points
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• Maximum error found at each iteration may increase

1 2 3 4 5
Iterations
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a u e o ou d at eac te at o ay c ease
– Due to the derivative-free solver is given more information at each iteration



CARBON CAPTURE OPTIMIZATION
• Problem statement:

Capture 90% of CO2 from a 350MW power plant’s post combustion flue gas with p 2 p p p g
minimal increase in the cost of electricity

r

650 MW
Coal fired power 

plant

CO2 rich 
flue gas

CO2 poor 
flue gas

ds
or

be
r

ge
ne

ra
to

plant A
d

Re
g

• Design considerations:
– Capture technology

• Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc.g f g f f p

– Number of reactors

– Reactor configuration and geometry

Operating conditions
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– Operating conditions



BUBBLING FLUIDIZED BED

Outlet gas Solid feed

Cooling
water

CO2 rich gas CO2 rich solid outlet

Model outputs (13 total)
Geometry required (2)

• Model inputs (14 total)
– Geometry (3)

Operating condition required (1)

Gas mole fractions (2)

Solid compositions (2)

– Operating conditions (4)

– Gas mole fractions (2)

– Solid compositions (2) Solid compositions (2)

Flow rates (2)

Outlet temperatures (3)

Solid compositions (2)

– Flow rates (4)
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Design constraint (1)Model created by Andrew Lee at the National Energy 
and Technology Laboratory



ADAPTIVE SAMPLING

16%

Progression of mean error through the algorithm
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Initial data set: 

0%
1 3 5 7 9

E
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Final data set: 

261 
1 3 5 7 9

Iterations
FGas_out Gas_In_P THX_out Tgas_out Tsorb_out
dt gamma out lp vtr xH2O ads out
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dt gamma_out lp vtr xH2O_ads_out
xHCO3_ads_out zCO2_gas_out zH2O_gas_out



EXAMPLE MODELS
Solid feed

Cooling
water

CO2 rich gas
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SUPERSTRUCTURE OPTIMIZATION

a1 d1

Cleaned gas

a1 d1

Solid sorbent 
stream

a2 d2Solid sorbent CO2
capture

a3 d3

p

4 4
Other 

capture

Flue gas from

a4 d4capture 
trains

Cooling water
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Flue gas from 
power plant Steam

Work



SUPERSTRUCTURE OPTIMIZATION

a1 d1

Cleaned gas

a1a1 d1

Solid sorbent 
stream

a1

a2 d2Solid sorbent CO2
Capture

a2
Add the set of 

surrogate models 

Solid sorbent CO2
capture

a3 d3

p

a3

generated for each 
adsorber

p

4 4
Other 

capture 4

Flue gas from

a4 d4capture 
trains

Cooling water

a4
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Flue gas from 
power plant Steam

Work



BRANCH-AND-REDUCE

Search Tree

FinitenessDiscardRange Reduction
Finiteness

Partition

Discard

Convexification x*
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BARON HISTORY

1991-93 Duality-based range reduction
Nonlinear constraint propagation

1994-95 Branch-and-bound system
Finite algorithm for separable concave minimizationFinite algorithm for separable concave minimization

1996-97 Parser for factorable programs; nonlinear relaxations
Links to MINOS and OSL

1997 98 P l h d l l ti Li k t CPLEX1997-98 Polyhedral relaxations; Link to CPLEX
Compressed data storage, tree traversal, …

2002 Under GAMS
2004 Branch-and-cut
2005-07 Local search; memory management, …
2009 Multi term envelopes2009 Multi-term envelopes
2010-11 Multi-variate and multi-constraint envelopes/relaxations

Links to CLP and IPOPT
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CONVEXIFICATION OF MULTILINEARS
Decompose multilinear functions into low-dimensional dense 
components that are convexified individually

1

875656452423243121)( xxxxxxxxxxxxxxxxxxxL +++++++=

2 5 8 5 81 2 5 8 Sum-
decomposable

5 8

73 4 6 7 7

1 2 52 51 2

3 4 6
Adaptive 
edge-cover4 63 4

4232431211 )( xxxxxxxxxxL +++=
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COMPARISONS WITH OTHER CODES

Test problems from
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Test problems from 
http://helios.princeton.edu/GloMIQO/test_suite.html#Computational%20Geometry



COMPARISONS WITH GloMIQO ON 136 QCQPs
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Test problems from Bao et al. (2009) 



PRELIMINARY RESULTS ON MINLP

Cleaned gas

a1
d1

Regen.
gas

a2
Solid sorbent 

stream

Other 
capture 
trains

Flue gas from 
power plant

trains

power plant

Cooling water
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CONCLUSIONS
• The algorithm we developed is able to model black-box 

functions for use in optimization such that the models arefunctions for use in optimization such that the models are
Accurate

Tractable in an optimization framework (low-complexity models)

Generated from a minimal number of function evaluations

• Surrogate models can then be incorporated within a• Surrogate models can then be incorporated within a 
optimization framework flexible objective functions and 
additional constraints

ALAMO
Automated Learning of Algebraic Models for Optimization
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