

LLNL-SM-511465

Software
Development Plan

Gregory Pope
V 1.2

May 9, 2012

http://www.bing.com/images/search?q=coal+power+plant&view=detail&id=FE7C03AF272F4F8A56F6ED75AC3ACC00C3459234&first=31&FORM=IDFRIR�
https://www.acceleratecarboncapture.org/drupal/�

2

Disclaimers

This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or
product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

3

Approvals

Author:

 Date
Gregory Pope
CCSI SQA

Approve:

 Date
Paolo Calafiura
Team 8 Lead

Concur:

 Date
David Miller
CCSI Program Director

4

Revision History

Document
Version

Revision

Date
Originator(s) Revision Description

V1.0 10/19/2011 G. Pope First edition

V1.1 12/19/2011 G. Pope Minor updates

5

Table of Contents

1. Introduction .. 6

1.1 CCSI Project Overview .. 6

1.2 Purpose and Scope of the CCSI SDP .. 7

1.3 CCSI Software Development and Modeling Activities .. 8

1.4 Organization of CCSI Task Set Five Codes ... 10

2 Project Risk and Grading ... 12

3 Required Software Quality Practices Mapped To Waste IPSC .. 14

4 Method of Meeting Activity .. 20

4.1 Software project management and quality planning (complies): ... 20

4.2 Software risk management (complies): ... 20

4.3 Software configuration management (complies):... 20

4.4 Procurement and supplier management (complies):.. 20

4.5 Software requirements identification and Management (complies): ... 21

4.6 Software design and implementation (complies): .. 21

4.7 Software safety (complies): ... 21

4.8 Verification and validation (complies): .. 21

4.9 Problem reporting and corrective action (complies): ... 21

4.10 Training of personnel in the design, development, use, and evaluation of safety software
(complies): ... 21

4.11 Important Data.. 22

Appendix A Acronyms, Abbreviations, and Terms .. 23

Appendix B Risk Consequence Tiers.. 29

B.1 CCSI Risk Consequence Severity .. 30

B.2 CCSI Risk Due To Software Environment... 31

B.3 Risk Level ... 32

Appendix C Good Practices for Modeling Tools and Data .. 33

Appendix D Good Practices for Spreadsheet Models ... 35

6

1. Introduction
This Software Development Plan (SDP) describes how the Carbon Capture Simulation Initiative
(CCSI) software and modeling activities will meet or exceed future software quality assurance
goals that inevitably will be established if the initial phase modeling and simulation efforts are
successful. Specifically this document will describe, for each of the ten DOE Work Activities
described in DOE Order 414.1-d, the processes (consisting of activities, tools, work products and
artifacts) which are implemented by CCSI to develop software and how they meet the required
level of rigor based on risk level using a graded approach. To assure the integrity and
repeatability of early work done with statistical or mathematical based research tools such as R,
MFIX, ASPEN, and Matlab, a good scientific peer review process, such as ANSI/ASQ Z.13-1999,
will be used. This Software Development Plan is currently not required by the DOE FE office, but
is being prepared pro-actively so that software and models developed in the early phases of the
CCSI project can comply with anticipated DOE standards and best practices for research
development. This SDP will also hopefully be useful for determining the pedigree of the CCSI
codes and models and the known risks inherent in using them for decision informing.

1.1 CCSI Project Overview

The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories,
industry and academic institutions that will develop and deploy state-of-the-art computational
modeling and simulation tools to accelerate the commercialization of carbon capture
technologies from discovery to development, demonstration, and ultimately the widespread
deployment to hundreds of power plants. By developing the CCSI Toolset, a comprehensive,
integrated suite of validated science-based computational models, this initiative will provide
simulation tools that will increase confidence in designs, thereby reducing the risk associated
with incorporating multiple innovative technologies into new carbon capture solutions. The
scientific underpinnings encoded into the suite of models will also ensure that learning will be
maximized from successive technology generations.

The CCSI Task Teams are responsible for the design, implementation, verification and validation
of simulation of software codes that support Carbon Capture Simulations which allow new
concepts to move from the lab to power plant quickly and at low cost. The DOE FE SQA
requirements have yet to be specified for the CCSI program. As a result the CCSI program has
proactively organized around best practices for software development as described in this
Software Development Plan (SDP) and on the CCSI Best Practices website
https://www.acceleratecarboncapture.org/drupal/wiki/ts8/best-practices. There are ten task
teams currently in the CCSI project as shown in figure 1:

https://www.acceleratecarboncapture.org/drupal/wiki/ts8/best-practices�

7

Figure 1. CCSI Organizational Chart

1.2 Purpose and Scope of the CCSI SDP
The purpose of this software development plan is document the pedigree of the early stage research
software and models being developed and used as if DOE Oder 414.1-d was applied. DOE Order 414.1-d
includes a graded approach which will be used to risk grade codes and strike a balance between agility
and discipline required for effective scientific discovery. The early stages of the CCSI research and
development codes will allow maximum agility with light weight discipline and workflow implemented
via automated tools which improve developer productivity. As the research codes mature and are used
for decision informing, licensing, and safety related applications the risk grade of the codes and
appropriate rigor will be applied. Software quality assurance oversight for CCSI is the responsibility of
the CCSI Software Quality Engineer residing in Task Team eight. The CCSI Software Quality Engineer is
responsible for developing the CCSI SDP, risk grading the CCSI codes with assistance from the CCSI
developers, and generally assisting the CCSI collaborating National Laboratories and partners with
appropriate Software Quality Assurance practices and tools.

In addition to new code development in task team 5, statistical modeling is occurring in Task
team 1, 2, 3, 4, 6, 7, and 8. The work being done using a number of open source, National
Laboratory, and commercial tools. The iterative modeling taking place with these tools does
require a good peer review process of the data inputs, and when important results are
achieved, appropriate version information and data is archived to be able to repeat the results.

8

1.3 CCSI Software Development and Modeling Activities
Most of the task teams (1 through 8) have either software development activity (task team 5) or
modeling (Teams 1, 2, 3, 4, 6, 7, 8) occurring in them. The modeling is performed using open source or
commercial modeling tools or spreadsheets. The software for these modeling tools has already been
developed by open source or commercial vendors and is not covered by this SDP. The data or coding of
the models used as inputs to these tools is however covered by this SDP. Task team five is writing
software to interface various tools together; this new code is covered by the SDP.

1.3.1 Task Team One, Basic Data and Models, is developing models that can be embedded
into models used by tasks 2-4. The team is using the open source statistical modeling
tool R version 2.1.3.2 to develop models. Models are developed using a C like language
and provided libraries.

1.3.2 Task Team Two, Particle and Device Scale Models, is using MFIX (a Fortran Multiphase
Flow with Interphase eXchange) and Ansys Fluent , which are Computational Fluid
Dynamics (CFD) codes.

MFIX is a general purpose computer code developed at the National Energy Laboratory
(NETL) for describing the hydrodynamics, heat transfer, and chemical reactions in fluid
systems. MFIX has been used for describing bubbling and circulating fluidized beds and
spouted beds. MFIX calculations give transient data on the three dimensional
distribution of pressure, velocity, temperature, and specialized mass fractions. MFIX
code is based on a generally accepted set of multiphase flow equations. The code is
used as a “test-stand” for testing and developing multiphase flow constructive
equations. The tool requires the user to supply data values for the various required
input parameters.

ANSYS FLUENT software contains the broad physical modeling capabilities needed to
model flow, turbulence, heat transfer, and reactions for industrial applications ranging
from air flow over an aircraft wing to combustion in a furnace, from bubble columns to
oil platforms, from blood flow to semiconductor manufacturing, and from clean room
design to wastewater treatment plants. Special models that give the software the ability
to model in-cylinder combustion, aeroacoustics, turbomachinery, and multiphase
systems have served to broaden its reach. The tool requires the user to supply data
values for the various required input parameters.

1.3.3 Task Team Three, Process Synthesis and Design, is primarily using the Aspen Custom
Modeler (ACM) and GAMS (General Algebraic Modeling System).

Aspen Custom Modeler (ACM) is used to quickly create rigorous models of processing
equipment and to apply these equipment models to simulate and optimize continuous,
batch, and semi-batch processes. It is used across many industries, including chemicals,
power, nuclear, food and beverage, metals and minerals, pharmaceuticals, and

9

consumer goods. Aspen Customer Modeler is a core element of AspenTech’s
aspenONE® Engineering applications.

The General Algebraic Modeling System (GAMS) is a high-level modeling system for
mathematical optimization. GAMS is designed for modeling and solving linear,
nonlinear, and mixed-integer optimization problems. The system is tailored for complex,
large-scale modeling applications and allows the user to build large maintainable models
that can be adapted to new situations. The system is available for use on various
computer platforms. Models are portable from one platform to another.

The GAMS algebraic modeling language (AML) is formally similar to commonly used
forth generation programming languages. GAMS contains an integrated development
environment (IDE) and is connected to a group of third-party optimization solvers.
Among these solvers are BARON, COIN solvers, CONOPT, CPLEX, DICOPT, GUROBI,
MOSEK, SNOPT, and XPRESS.

GAMS facilitates the users to implement a sort of hybrid algorithms combining different
solvers in a seamless way. Models are described in concise algebraic statements which
are easy to read, both for humans and machines. NETL has also developed some
interface code among these tools, although the majority of this work is in Task 5.

1.3.4 Task Team Four, Plant Operations and Control, is developing dynamic models in ACM
and Aspen Dynamics.
Aspen Plus Dynamics extends Aspen Plus steady-state models into dynamic process
models, enabling design and verification of process control schemes, safety studies,
relief valve sizing, failure analysis, and development of startup, shutdown, rate-change,
and grade transition policies. Aspen Plus Dynamics is a core element of AspenTech’s
aspenONE® Engineering applications.

1.3.5 Task Team Five, Integration Framework, currently developing interfaces among tools
and tools for building reduced order models. See figure 2 below. Explanation is in
section 1.4.

1.3.6 Task Team Six, Uncertainty Quantification and Optimization is focusing on UQ, and
using PSUADE a C++ based UQ tool developed by Charles Tong of LLNL. The PSUADE
code has been subjected to static analysis using the Klocwork static analyzer tool. The
findings are being evaluated. The code is kept in a subversion repository and is tested
with a partially completed set of verification tests. The code is used on the ASCEM,
NRAP. and ASC program for UQ,

1.3.7 Task Team Seven, Risk Analysis and Decision Making, is developing decision tools.
Currently, these are largely spreadsheet models with some underlying Matlab.

MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation
programming language. Developed by MathWorks, MATLAB allows matrix manipulations,
plotting of functions and data, implementation of algorithms, creation of user interfaces, and
interfacing with programs written in other languages, including C, C++, Java, and Fortran.

http://en.wikipedia.org/wiki/Computer_model�
http://en.wikipedia.org/wiki/Optimization_(mathematics)�
http://en.wikipedia.org/wiki/Algebraic_modeling_language�
http://en.wikipedia.org/wiki/Integrated_development_environment�
http://en.wikipedia.org/wiki/Integrated_development_environment�
http://en.wikipedia.org/wiki/Solver�
http://en.wikipedia.org/wiki/Solver�
http://en.wikipedia.org/wiki/MOSEK�
http://en.wikipedia.org/wiki/Numerical_analysis�
http://en.wikipedia.org/wiki/Fourth-generation_programming_language�
http://en.wikipedia.org/wiki/Fourth-generation_programming_language�
http://en.wikipedia.org/wiki/MathWorks�
http://en.wikipedia.org/wiki/Matrix_(mathematics)�
http://en.wikipedia.org/wiki/Function_(mathematics)�
http://en.wikipedia.org/wiki/Algorithm�
http://en.wikipedia.org/wiki/User_interface�
http://en.wikipedia.org/wiki/C_(programming_language)�
http://en.wikipedia.org/wiki/C%2B%2B�
http://en.wikipedia.org/wiki/Java_(programming_language)�
http://en.wikipedia.org/wiki/Fortran�

10

1.3.8 Task Team Eight, Software Development Support, is creating a Drupal wiki to support
collaboration, a Subversion code repository, and Trac and Jira trackers for defect tracking and
user story tracking. The SVN repository is being used for the Drupal web site software
Configuration Management, the Jira trackers are being used by Team 8 to add epics, user
stories, and tasks to the team’s backlog.

Drupal is a free and open-source content management system (CMS) and content management
framework (CMF) written in PHP and distributed under the GNU General Public License.[2][3][4] It
is used as a back-end system for at least 1.5% of all websites worldwide[5][6] ranging from
personal blogs to corporate, political, and government sites including whitehouse.gov and
data.gov.uk.[7] It is also used for knowledge management and business collaboration.

Apache Subversion (often abbreviated SVN, after the command name svn) is a software
versioning and a revision control system distributed under a free license. Developers use
Subversion to maintain current and historical versions of files such as source code, web pages,
and documentation. Its goal is to be a mostly-compatible successor to the widely used
Concurrent Versions System (CVS).

JIRA is a proprietary issue tracking product, developed by Atlassian, commonly used for bug
tracking, issue tracking, and project management. The product name, JIRA, is not an acronym
but rather a truncation of "Gojira", the Japanese name for Godzilla.[3] It has been developed
since 2004.

1.3.9 Task Team Nine, Industrial Challenge Problems, is not currently developing software or
using modeling tools.

1.3.10 Task Team Ten, Industrial Collaboration, is not currently developing software or using
modeling tools.

1.4 Organization of CCSI Task Set Five Codes

The following block diagram (figure 2) portrays the CCSI research codes currently under
development in task 5.

http://en.wikipedia.org/wiki/Free_and_open-source_software�
http://en.wikipedia.org/wiki/Content_management_system�
http://en.wikipedia.org/wiki/Content_management_framework�
http://en.wikipedia.org/wiki/Content_management_framework�
http://en.wikipedia.org/wiki/PHP�
http://en.wikipedia.org/wiki/GNU_GPL�
http://en.wikipedia.org/wiki/Drupal#cite_note-licensingfaq-1�
http://en.wikipedia.org/wiki/Drupal#cite_note-licensingfaq-1�
http://en.wikipedia.org/wiki/Drupal#cite_note-reqs-3�
http://en.wikipedia.org/wiki/Back-end�
http://en.wikipedia.org/wiki/World_wide_web�
http://en.wikipedia.org/wiki/Drupal#cite_note-4�
http://en.wikipedia.org/wiki/Drupal#cite_note-4�
http://en.wikipedia.org/wiki/Blog�
http://en.wikipedia.org/wiki/Whitehouse.gov�
http://en.wikipedia.org/wiki/Data.gov.uk�
http://en.wikipedia.org/wiki/Drupal#cite_note-6�
http://en.wikipedia.org/wiki/Knowledge_management�
http://en.wikipedia.org/wiki/Software_versioning�
http://en.wikipedia.org/wiki/Software_versioning�
http://en.wikipedia.org/wiki/Revision_control�
http://en.wikipedia.org/wiki/Free_license�
http://en.wikipedia.org/wiki/Source_code�
http://en.wikipedia.org/wiki/Concurrent_Versions_System�
http://en.wikipedia.org/wiki/Proprietary_(software)�
http://en.wikipedia.org/wiki/Issue_tracking�
http://en.wikipedia.org/wiki/Atlassian�
http://en.wikipedia.org/wiki/Bug_tracking_system�
http://en.wikipedia.org/wiki/Bug_tracking_system�
http://en.wikipedia.org/wiki/Issue_tracking_system�
http://en.wikipedia.org/wiki/Project_management�
http://en.wikipedia.org/wiki/Godzilla�
http://en.wikipedia.org/wiki/JIRA_(software)#cite_note-2�

11

Figure 2.

The primary purpose of the CCSI research codes under development are to provide interfaces
or “glue” for existing COTS (Commercial off the shelf) and GOTS (Government of the Shelf)
codes to operate with each other. The CCSI created tool chain allows parameters of interest to
be selected using the GUI interface of MatLab (a COTS tool). MatLab provides the user selected
input parameters to Psuade, an existing uncertainty quantification tool developed at LLNL.
Psuade creates a range of values for the selected parameters of interest. The input value ranges
are sent from Psuade to the Communicator tool. Communicator is a new C++ code that can
communicate with the existing CCSI website to set up simulation runs, monitor run status, and
get results. The CCSI web site will create individual runs, breaking the run sets into individual
runs. The individual runs are put into a data base. The individual runs in the data base are
collected by a new software code called the consumer. The consumer code sets up spreadsheet
like formats for input into Sinter, which is an existing tool allowing spreadsheets to be used as
input into Aspen. Using the Sinter supplied input parameters; the Aspen tool (existing COTS
tool) will do the simulation and place the results on the data base, where they can be queried
by the Communicator tool. The purpose of this tool chain (collectively called Sinter) is to
facilitate an automated way to determine the influence of selected parameters on the

12

simulation. This information will help determine and quantify the uncertainty of the results
obtained from the Aspen based simulations.

2 Project Risk and Grading
The Task set 5 primary developer and the CCSI Software Quality Engineer have determined the
CCSI risk classifications or risk levels (RL). The CCSI software codes have been previously
assessed in accordance with the CCSI SQAP and documented using the Risk Grading Tool1 to
have a risk level of 4, 1 being the highest (safety code) and 5 being the lowest (no severity or
consequence of failure). Risk level 5 codes have the lowest severity consequence of failure; risk
level 3 codes have a moderate consequence of failure; risk level 2 codes are safety significant
severity or consequence of failure. The risk grading tool results are shown as screen shots in
appendix B. These results are archived in the Risk Grading Tool2

.

1. Risk Grading Tool currently located at LLNL internal website: https://caribou-
r.llnl.gov/projectManager/?proj_type=grading. Tool to be available through CCSI web site in the
future.
2. Ibid

https://caribou-r.llnl.gov/projectManager/?proj_type=grading�
https://caribou-r.llnl.gov/projectManager/?proj_type=grading�

13

Practice Rigor Levels

Rigor Level Definition
Managed
‘M’

Highest level of rigor or formality. The project has processes
and work products, which are reviewable in advance and well
documented. Artifacts are living documents that are integral
with the life cycle and updated as needed. Work products and
processes adhere to templates and standards used.
Appropriate level of planning is done and progress is
measured against the plan. Appropriate measurements of the
processes and products are made to support management
decisions.

Documented
‘D’

Middle level of rigor or formality. Artifacts are purposefully
produced to communicate decisions during the course of the
project. Activities may be combined and documented
together. When appropriate, plans may be produced prior to
activities.

Understood
‘U’

Lowest level of rigor or formality. These practices may be
implemented either formally or informally. Any produced
artifacts are characterized as incidental, such as e-mail
discussions and the like. Informal in nature.

Practice Implementation Levels

Implementation
Level

Definition

Full
‘F’

Full implementation of the indicated rigor level is required.
Many practices have multiple options for implementation at
any given rigor level, the specific implementation is left to
the project team to decide. Greater rigor may be applied. If
there is a strong case for not implementing a practice, the
justification should be documented.

Tailored
‘T’

Tailored implementation of a practice allows for variation in
the indicated rigor level. Tailoring is also adapting the
practice to the level of development control. The rigor levels
above and below the indicated rigor level should bound the
tailored implementation. A practice may be eliminated if
there is a strong case for doing so.

14

3 Required Software Quality Practices Mapped To Waste IPSC
The following tables lay out the software Work Activities and the documentation associated
with the required activities. The Rigor indicators are as follows:

FM – Fully implemented and Managed

TM – Tailored and Managed

FD – Fully implemented and Documented

TD – Tailored and Documented

FU – Fully Understood

TU – Tailored and Understood

N/A – Does not apply (RL 5 only)

SQA Work Activity 1 - Software Project management and Quality Planning

Activity Sinter
Level

4

CCSI Implementation

Plan and manage project
activities, resources and
commitments (including
schedule; budget; software
development methodology;
customer interactions;
feedback and status reporting;
and identify, acquire, and
deploy resources such as
development and test
environments)

TU

Internal Task team SCRUM
meetings, stakeholder
requirements entered as user
stories added to Jira tracker.

PI meetings twice yearly to
report progress.

Collaborative web site which
includes tasks and
assignments.

Determine applicable
regulatory requirements,
indentify organization, identify
Quality Assurance Program and
Records, and identify auditing
process.

TU

CCSI Software Development
Plan defines risk and rigor
level used for software.

Risk Grading tool defines Risk
Level . CCSI Software
Development Plan (SDP)
defines how rigor levels met

15

Activity Sinter
Level

4

CCSI Implementation

Select and utilize standards TD CCSI using DOE Order 414.1-d

Identify, define, and plan
software quality assurance
activities

TU
Contained in this Software
Development Plan (SDP)

Implement process
improvement activities TU

Submitted as User Stories to
TRAK tracker, implemented by
task teams.

SQA Work Activity 2 – Software Risk Management

Plan and execute a risk
management process
(including risk analysis and
mitigation)

TU

Stakeholders may enter risks
as user stories onto TRAK
tracker. Risks and mitigations
also addressed in weekly
SCRUM teleconferences.

SQA Work Activity 3 – Software Configuration Management

Plan and implement a software
configuration management
process (including disaster
recovery planning and release
version control, document
control, purchased items,
instructions, procedures,
drawings)

TU

SVN tool used. Open source
distributed Software CM tool.

16

 SQA Work Activity 4 - Procurement and Supplier Management

Activity Sinter
Level

4

CCSI Implementation

Implement processes for
controlling interactions with
subcontract interfaces

TD
Using DOE approved
Procurement Plan

Implement processes for
controlling interactions with
collaborations and tool vendors TD

CCSI wiki allows
collaboration between
labs. Best Practices wiki
links to tool vendors.

Include software quality
requirements in procurement and
selection process

TD

Acquisition Plan
contained in DOE
approved Procurement
Plan

Qualify software for intended
usage (may be included in V&V)

TU
See V&V

Indentify (to the extent known)
review and update requirements
and maintain traceability of
requirements

TU

Requirements, features,
elicited via user stories on
TRAK tracker. Also elicited
at PI meetings.

Identify and track technical
constraints

TU

Language is C++ and C#
for CCSI generated “glue”
code. Using ASPEN Plus
simulation tool (COTS
tool) , Psuede (LLNL UQ
code), MatLab (COTS tool)

SQA Work Activity 5 - Software Requirements Identification and

17

SQA Work Activity 6 - Software Design and Implementation

Activity Sinter
Level

4

CCSI Implementation

Identify the software design (to the
extent known, including software
and system interfaces)

TU
Requirements go directly
to code. Code is the
design.

Identify and utilize coding
standards

TU

C++ and C# standards
used as appropriate.
Code also is analyzed by
Klocwork static analyzer
which is capable of
finding structural defects
the compilers and
testing may miss..

SQA Work Activity 7 - Software Safety

Software Safety Plan (including
safety and hazard analysis) TU

Currently all codes are
used at R&D level only.

Perform reliability, vulnerability
and usability analysis as needed

TU

Currently all codes are
used at R&D level only.
Software Safety Plan to
be written later if
required.

Designation for intended usage
and users

TU

Currently all codes are
used at R&D level only.
Codes are intended for
use by expert users who
can evaluate the
significance of results.

18

SQA Work Activity 8 - Verification and Validation

Activity Sinter
Level

4

CCSI Implementation

Conduct software testing
(unit, integration, system) TU

Tests developed for
demonstration of the prototype
to stakeholders.

Conduct walkthroughs / desk
checks and peer reviews.

TU

Ad hoc for software

Use ANSI/ASQ Z1.13-1999 as
guidance for research reviews of
modeling data.

Implement software
integration and build
processes

TU

Appropriate build tools used.
Using Eclipse IDE and compatible
plug ins.

SQA Work Activity 9 - Problem Reporting and Corrective Action

Implement problem reporting
and resolution (corrective
action) processes

TU

Problem reporting done via
TRAC, soon to be Jira (open
source bug tracing tool)

Provide maintenance support
as needed TU

 Developers support code
maintenance and users as
required.

Create release notes as
needed TU

Release notes in email to users
and in code comments.

19

SQA Work Activity 10 - Training of Personnel in the Design, Development, Use, and Evaluation
of Safety Software

Activity Sinter
Level

4

CCSI Implementation

Select, train, and task team
members (including training in
software safety design,
development, and evaluation)

TD

Team includes highly
skilled domain experts
and computer scientists.

Produce user and installation
guidance as needed

TU

To be completed as
needed. Communicated
via SCRUM meetings and
emails.

20

4 Method of Meeting Activity

4.1 Software project management and quality planning (complies):
The two person Sinter code team, members of Test set five, are located at LBNL and
LLNL and communicate as needed via email. They virtually attend Task set five SCRUMS
weekly. Quality planning will use this CCSI SDP and a risk grading tool. The risk grading
tool has assessed the CCSI effort in Task set five as risk level 4. Tasks for the software
development are allocated via trackers. Currently Trac is used; however Jira is also
under evaluation. While Jira may be a better defect tracking tool, it is more complex for
management applications. So task trackers that are part of Drupal such as Case Tracker
Plus are currently being evaluated as well.

4.2 Software risk management (complies):
Risks to the CCSI program can be entered into the tracker and reviewed on a regular
basis. One of the identified risks is developing software without a governing DOE
standard. To mitigate this risk this Software Development Plan is being written. A
second risk will be if the research codes are successful and continue on. If this happens
a number of risk mitigations may have to be used, such as beefing up the test coverage
in the domains of interest, more input checking code added, additional error messages
and exception handling added, porting to other platforms, peer review of critical
algorithms and parameters, and static analysis of the code. Another risk is to over
burden the research phase of the program with heavy weight and restrictive practices.
To mitigate this risk an Agile methodology is being used with a graded approach.

4.3 Software configuration management (complies):
The CCSI codes will be kept in an open source SVN repository,
https://www.acceleratecarboncapture.org/drupal/all-ccsi/subversion . The SVN
repository will assure version control on the software, and that multiple team members
can modify and test code without interference to/from other developers. The
repository is automatically backed up periodically. Periodic archiving of the R tool data
or Matlab data should be accomplished to preserve version numbers and data integrity.
This does not have to be done continuously, but certainly after the important modeling
milestones are achieved, so that the results can be repeated.

4.4 Procurement and supplier management (complies):
It is envisioned that some COTS software such as Aspen and Matlab will be procured by
CCSI. The procuring national laboratory will use a DOE approved procurement system
to support the CCSI effort.

https://www.acceleratecarboncapture.org/drupal/all-ccsi/subversion�

21

4.5 Software requirements identification and Management (complies):
Requirements for the CCSI software are elicited s use cases via trackers on the CCSI
collaborative web site, https://svn.acceleratecarboncapture.org/trac . It therefore sets
the baseline expectations and to some extent determines the features required in the
software being developed. The stakeholders may also make their requirements known
to the CCSI developers through PI meetings and other forms of communications.

4.6 Software design and implementation (complies):
The prototype will proceed from requirements directly to code. Code architecture is
designed to interface existing tools to be used in a tool chain. The CCSI developed code
will be “glue” code to enable existing components to communicate more efficiently.
The design of the user interface is dictated by the existing components.

4.7 Software safety (complies):
The research codes are not currently being used in a facility safety application or to
inform decisions on facility design. As the CCSI code consequences of failure increase
the required levels of rigor for development will also increase.

4.8 Verification and validation (complies):
The CCSI software will develop ranges of inputs for selected key parameters. These
ranges will create individual simulation runs on the Aspen simulator. After verification
of Aspen results by domain experts or validation of results against experiments these
simulation runs will be part of the verification suite of tests that are run nightly or after
changes are detected in the source codes. The test cases will also be run periodically as
regression tests at the system level. Unit tests are envisioned to be created along with
the code using a framework such as cppunit, these tests may also be used as part of the
regression test suite.

4.9 Problem reporting and corrective action (complies):
Problem reporting will be accomplished using the CCSI defect tracker, currently Trac,
but Jira is under consideration to replace it. The tool can be found at ,
https://svn.acceleratecarboncapture.org/trac . The modelers and development team
are distributed among the participating National Laboratories with commercial and
academic partners. The team collaborates using a Drupal wiki hosted at LBNL,
https://www.acceleratecarboncapture.org/drupal/ .

4.10 Training of personnel in the design, development, use, and evaluation of safety
software (complies):

The development staff for the CCSI has in depth academic backgrounds and research
and development experience in the knowledge domains required for development of

https://svn.acceleratecarboncapture.org/trac�
https://svn.acceleratecarboncapture.org/trac�
https://www.acceleratecarboncapture.org/drupal/�

22

their respective codes and models (physics, chemistry, computer science, CFD codes,
etc.). Code users can self train using supplied primers, demo problems, tutorials and
sample problems. Personnel files documenting the academic credentials and R&D
experience of team members meet are available.

4.11 Important Data
The other major software related activity is modeling. Modeling differs from software development as
the software based tools used for doing the modeling have already been developed. What the CCSI task
teams engaged in modeling are doing is providing inputs to these modeling tools. Inputs can be data
values and/or programming language statements. CCSI has little to no control over the code
development of these existing tools; however CCSI does have control over how the inputs used with the
modeling tools are handled. As part of good scientific process, important results obtained from the
modeling tools should preserve the data used and the version of the tools used so that the modeling
results can be repeated in the future. Also, important modeling discoveries should require peer review
of results to assure that the result was obtained for the right reason. It is understandable that a single
researcher using a modeling tool may make many trial and error changes during the model
development. Each of these variations do not need to be peer reviewed or archived, However, when the
researcher does develop a model that is significant and may inform other models or algorithms to be
added to the code, then a peer review and archiving of results would seem appropriate. Archiving and
peer review of data used as inputs to modeling tools can be accomplished following the practices stated
in ANSI/ASQ Z1.13, Quality Guidelines for Research. Good practices for modeling and for spreadsheets
are listed in Appendix c and D respectively

23

Appendix A Acronyms, Abbreviations, and Terms

Activity Executing individual actions needed to fulfill a practice. For
instance, coding activity fulfills the practice of developing
code modules as does compiling activity and debugging
activity.

Artifact A report, log, e-mail, or other record that is created as a
result of a software development activity. For example,
filling out a defect report on a defect-tracking tool such as
Bugzilla or ClearQuest creates an artifact defect report.
Running a set of test cases may create a test log artifact.
Compiling code creates an artifact listing. Writing down
notes from a design discussion creates a design artifact.

Consequence Tier See Error! Reference source not found., Error! Reference
source not found..

COTS Commercial off-the-shelf
DOE Department of Energy
DSA Documented Safety Analysis
Graded Approach The process of ensuring that the level of analysis,

documentation, and actions used to comply with a
requirement in this part is commensurate with:
(1) The relative importance to safety, safeguards, and

security;
(2) The magnitude of any hazard involved;
(3) The life cycle stage of a facility;
(4) The programmatic mission of a facility;
(5) The particular characteristics of a facility;
(6) The relative importance of radiological and non-

radiological hazards; and
(7) Any other relevant factor.

Grading The process by which the level of detail in analyses,
documentation, and actions necessary to comply with
requirements is commensurate with:
• The relative importance to safety, safeguards, and

security;
• The magnitude of any hazard involved;
• The life cycle stage of a facility;
• The programmatic mission of a facility;
• The particular characteristics of a facility; and
• Any other relevant factors.

Hazard Analysis The determination of material, system, process, and plant
characteristics that can produce undesirable consequences,
followed by the assessment of hazardous situations
associated with a process or activity. Largely qualitative

24

techniques are used to pinpoint weaknesses in design or
operation of the facility that could lead to accidents. (D&P
Manual of NWC)

IEEE Institute of Electrical and Electronics Engineers, Inc.
Inspection 1. Measuring, examining, testing and gauging one or more

characteristics of a product or service and comparing the
results with specified requirements to determine
whether conformity is achieved for each characteristic.
[ASQ]

2. A static analysis technique that relies on visual
examination of development products to detect errors,
violations of development standards and other
problems. Types include code inspections; design
inspection. [IEEE 610]

An inspection is a formal method of review where a team of
peers, including the author, meets to examine a work
product. An inspection usually consists of a kick-off
meeting followed by the inspection review. The work
product is typically inspected when the author thinks it is
complete and ready for transition to the next phase or
activity. The inspection may be a project milestone.

The focus of an inspection is only on defect identification.
Individual preparation using checklists and assigned roles is
emphasized. Metrics are collected and used to determine
entry criteria in the inspection meeting as well as for input
into product/process improvement efforts. [Westfall]

Inspection roles include: Moderator, Scribe, Author, and
Inspector.

NSQAP CCSI Software Quality Assurance Plan
Performance 1. The degree to which a system or component

accomplishes its designated functions within given
constraints, such as speed, accuracy, or memory usage.

2. A measure relating to time. The actual definition of
performance is project-specific. For some projects, this
may mean speed of processing to arrive at an answer or
create a display. For others, it may mean transaction
throughput. For still others, it may mean response time
under various levels of system loading.

Practice Actual performance or application of a group of activities.
For instance, the practice of analyzing requirements may
involve many activities such as enumeration, abstraction,
prioritization, assignment, verification, etc.

Practice level “Documented” The middle level of rigor or formality. Artifacts are
produced to communicate decisions during the course of

25

the project. The project follows the goals of the practice
with limited documentation of work products and activities.
Activities may be combined and documented together.
When appropriate, plans may be produced prior to
activities.

Practice level “Managed” The highest level of rigor or formality. The project has
processes and work products, which are reviewable in
advance and well documented. If templates and standards
are used, the work products and processes adhere to them.
Appropriate level of planning is done and progress is
measured against the plan. Requirements are traceable to
code and test cases. Appropriate measurements of the
processes and products are made to support management
decisions.

Practice level “Understood” The lowest level of rigor or formality. The project is not
required to implement these practices but may choose to
do so, either formally (managed) or informally
(documented). Any produced artifacts are characterized as
incidental, such as e-mail discussions and the like. Ad hoc
in nature.

Practices Requirements employed to prescribe a disciplined uniform
approach to the software development process

Process A set of interrelated work activities characterized by a set
of specific inputs and value added tasks that make up a
procedure for a set of specific outputs.

Professional Judgment The process of forming an opinion or evaluation by
discerning and comparing that the software process and/or
software product results conform to the technical or ethical
standards of the applicable professions within the context
of the environment in which it will be used (e.g., software
engineering, computer science, physics, chemistry,
seismology, meteorology, PMBOK®, SWEBOK®, etc.).

QA Quality Assurance
Quality Assurance All those actions that provide confidence that quality is

achieved.
Regression Testing Selective retesting of a system or component to verify that

modifications have not caused unintended effects and that
the system or component still complies with its specified
requirements.

Risk The quantitative or qualitative expression of possible loss
that considers both the probability that an event will occur
and the consequence of that event. [DOE 5480.23]

26

Safety and Hazard Analysis
Software and Design Software

Software that is used to classify, design, or analyze nuclear
facilities. This software is not part of an SSC but helps to
ensure the proper accident or hazards analysis of nuclear
facilities or an SSC that performs a safety function. (See
DOE O 414.1C)

Safety Management Program A program designed to ensure a facility is operated in a
manner that adequately protects workers, the public, and
the environment by covering topics such as quality
assurance; maintenance of safety systems; personnel
training; conduct of operations; inadvertent criticality
protection; emergency preparedness; fire protection; waste
management; or radiological protection of workers, the
public, and the environment. (10 CFR 830)

Safety Software Includes the following:
• Safety System Software
• Safety and Hazard Analysis Software and Design

Software
• Safety Management and Administrative Controls

Software
Safety System Software Software for a nuclear facility (including radiological) that

performs a safety function as part of an SSC and is cited in
either 1) DOE approved Documented Safety Analysis or, 2)
an approved hazard analysis. (See DOE O 414.1C)

Scalability The ability of a system to handle increased capacities of
users, devices, interfaces, storage, simultaneous processes,
or threads without degrading below a desired performance
level.

Security The ability of the system to protect classified data from
compromise by unauthorized sources, the ability of the
system to protect data from inadvertent loss or
modification, the ability of the system to protect against
deliberate attempts to inject faults, or attempts to gain
unauthorized control of the system.

Software Computer programs, procedures, and associated
documentation and data pertaining to the operations of a
computer system. (See DOE O 414.1C and NQA-1-2000)

Software Life Cycle 1. All activities (and work products) required to analyze,
define, develop, test, and deliver a software product. A
high-level representation of the phases of the software
development process.

2. The period of time that begins when a software product
is conceived and ends when the software is no longer
available for use. The software life cycle typically
includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation
and checkout phase, operation and maintenance phase,
and, sometimes, retirement phase. Note: These phases

27

may overlap or be performed iteratively. [IEEE 610]
Software Quality Assurance A planned and systematic approach to the evaluation of the

quality of and adherence to software product standards,
processes and procedures. Software Quality Assurance
includes the process of assuring that standards and
procedures are established and are followed throughout
the software acquisition life cycle.

SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SSC Structure, system, or component
STPA System Theoretic Process Analysis – A newer hazard

analysis technique developed by Dr. Nancy Leveson
especially designed for systems controlled by software.
Handles multiple simultaneous failures and user errors.

Technical Safety Requirements The limits, controls, and related actions that establish the
specific parameters and requisite actions for the safe
operation of a nuclear facility and include, as appropriate
for the work and the hazards identified in the documented
safety analysis for the facility: safety limits, operating limits,
surveillance requirements, administrative and management
controls, use and application provisions, and design
features, as well as a bases appendix. (10 CFR 830)

Traceability The degree to which a relationship can be established
between two or more products of the development
process; especially products having a predecessor,
successor, or master subordinate relationship to one
another.

Usability The ease with which a user can learn to operate, prepare
inputs for, and interpret outputs of a system or component.

Verification and Validation The process of determining whether the requirements for a
system or component are complete and correct, the
products of each development phase fulfill the
requirements or conditions imposed by the previous phase,
and the final system or component complies with specified
requirements. [IEEE 610]

Walkthrough A static analysis technique in which a designer or
programmer leads member of the development team and
other interested parties through a segment of
documentation or code, and the participants ask questions
and make comments about possible errors, violation of
development standards and other problems. [IEEE 610]

A walkthrough is a method of peer review. A team of peers
meets with the author to examine a work product and
provide feedback. This is typically done on the first draft of
a document or after a clean compile of the code. The focus
is on a general evaluation and may include: a review of

28

style and an analysis of engineering choices, as well as
defect identification. Walkthrough roles include:
Moderator, Scribe, Author, and Reviewer(s).

Typically, the author presents (walks through) the work
product and explains it to the team. Preparation before the
meeting is less emphasized than in inspections. [Westfall]

The purpose of a systematic walkthrough is to evaluate a
software product. A walkthrough may be held for the
purpose of educating an audience regarding a software
product. The major objectives are to find anomalies,
improve the software product, consider alternative
implementations, and evaluate conformance to standards
and specifications.

Work Product A document or any tangible item created before, during, or
after engaging in a software development activity. The
work product may or may not be automatically created by
the activity. For instance, a listing of test cases, a Software
Quality Assurance Plan, Action Item list from a project
meeting, or a list of desired features. Artifacts are also
considered work products.

29

Appendix B Risk Consequence Tiers
This appendix documents the answers to questions used to determine the risk grading of the
Waste codes. The risk grading is explained in the CCSI SQAP. The first step in Risk Grading is to
answer the questions in the Risk Consequence Severity Table. There are four categories listed in
the table below. The score is the highest tier for all categories. The second step is to answer
the questions about the risk due to software environment. The two scores from each question
set are used to determine the risk level.

Risk Consequence Severity Category Definitions

Risk Consequence
Category

Description

Environment, Safety &
Health

Risks to the operating and external environment,
including: toxic release and cleanup. Risks to life and limb.
Risks of regulatory liability.

Performance Risks to meeting program requirements/goals. Risks of
system downtime and work stoppage. Risks to the
acceptable performance of critical functions, including civil
liability. “Critical functions” are those important to the
operation of the system or subsystem.

Political & Public
Perception

Risks to governmental and public confidence and
concerns.

Security Risks to program, product, and material security.

B.1 CCSI Risk Consequence Severity

31

B.2 CCSI Risk Due To Software Environment
CCSI Risk Due To Software Environment Rating: _____5.61____

32

B.3 Risk Level
With the Risk Consequence Severity Tier and the Risk Due To Software Environment Weighted Factor identified, use the table below to determine the Risk
Level:

Risk Level Assessment CCSI RL 4
Matrix Grade
[Version: 27-Aug-08] Matrix Grade
[Version: 27-Aug-08]

Tier 0 RL1 RL1 RL1

Tier 1 RL3 RL2 RL2

Tier 2 RL4 RL3 RL3

Tier 3 RL4 RL4 RL3

Tier 4 RL4 RL4 RL4

Likelihood of Failure Rating: 0-2 2-8 8-16

Appendix C Good Practices for Modeling Tools and Data

 Traceability- References to source materials used in the model can be helpful to list. Where did the
assumptions, formulas, engineering units, and data in the model come from? Consider using comment lines in
the code to annotate source code or input used.

Validation - Are the sources of data values or equations the best possible source? Provide comments why the
particular source data or equations were used and any certifications or pedigree that would be useful for users
to be aware of. Beware of errors in text book code, compile and test text code before using before using.

Cloning - Does all data emanate from the same controlled source (for instance a data base or repository), or
do individual models contain definitions locally. Good practice is to use a universal source of modeling data
which is version controlled and traceable so assumptions will all be the same between various models. Also,
changing or revising data can be accomplished in a central location, not requiring changes in numerous
separate locations. Comments can reference the source and version used. All users of the centralized data
should be notified when a change is made.

Versioning - Is the version of the modeling tool used still supported and available? If not is the newer version
backwards compatible? This information can be inserted into comments. This applies to versions of compilers,
options used in the compiler, libraries, operating systems, and other model support codes.

Verification - Are definitions and engineering units all defined the same way? Provide comments which
describe why particular units of measure are chosen and what their values and engineering units are.

SQA - Is Software Quality Engineering applied uniformly for modelers or left up to each modeling effort?

Risk - Is a uniform risk grading practice followed and what were the results of the risk grading?

Modularity / Data Hiding - Can data or equations used by a model be changed by anyone or are permissions
controlled? Source code and data should have access control with appropriate levels of permissions.

Version Control - Each version should be assigned a unique number, the reason for the version change should
be noted as well as who made the change, time and date of the change. Both of these can be accomplished
using a code repository or document management tool such as Team Forge or SharePoint.

Version Control - Can a diff be done on code to show exactly what has changed between versions? This can be
accomplished in most versioning tools for model code and data.

Version Compatibility - Has the model been developed in one version of the modeling software but is now
being used on a different version of the modeling software? Compatibility tests should be noted in comments
to allow users to understand on which versions of the modeling tools the answers have been verified on.

Regression Testing - If appropriate has the new version of the model been demonstrated to not break when
using previous model input and that the new version of the model software is backwards compatible with
previous models.

34

V&V - Any Verification and Validation of values, formulas, answers, engineering units, or other items should
be noted in comments, who performed the V&V and when.

Maturity - Information about how the model was developed, how long has it been in use, how many people
use the model (if known) should be noted and updated as required in comments.

Accuracy - Information about the accuracy of the model or uncertainties in the model should be noted in the
comments.

Repeatability - Can the model produce the same outputs given the same inputs over time?

Testing - Does the model contain test cases of check data with expected results to help assure the model is
properly working?

Performance - Is the amount of time used for the model to reach an expected result reasonable and
consistent?

Documentation - Is the procedural language and data used in the modeling software well commented? Is a
user guide provided with the modeling software to aid the user?

Overwriting - If multiple users can collaborate on the model is a check in / checkout capability provided to not
allow overwriting the same section of code, code repositories and Team Forge and SharePoint are examples of
tools that automate this process.

Write Protection - Can any user change the source code or data if it is distributed? If so how is this controlled
and tested?

Disaster Recovery - If the modeling software and models were erased or destroyed is there a backup copy
available off site?

35

Appendix D Good Practices for Spreadsheet Models

Archiving - Consider archiving Excel files based on changes on some reasonable basis. For example, archive
and maintain the data sets at the end of the day and use a unique filename or identifier for that data set or
file. Tools such as Team Forge and Share Point help automate this process. Another approach would be to
export data from the spreadsheets (both the data inputs and calculated values) into a database for data
archive purposes.

Permissions - Access to the spreadsheet rows, columns, data, formulas, and macros should be limited to
certain users so that unintentional model errors cannot be introduced. This would limit the potential for users
to inadvertently change the formulas or data and thereby generate erroneous data

Accessibility – Limit accessibility to only those with a need, and the knowledge, to make changes

Input Control - Use of drop-down or check box menus for data entry should be used whenever possible to
minimize topographical errors.

Readability - Use “named values” for cells in equations within Excel instead of cell references when possible.
This makes verification of data calculations and data flow much easier.

Version Control - Note the version of Excel in which the spreadsheets are used, and note on what Operating
System (OS) the version of Excel is used, and platform type (32 bit or 64 bit).

Commenting - If there are Visual Basic (VB) macros their purpose and a description of what they do should be
in the comments (other than within the code of the macro itself or the name of the macro).

Modularity - Breaking down equations into smaller intermediate results helps to assure correct calculations.

Correctness - Assure correct order of execution and precedence of equations.

Typos - Caution on cut and paste from title bar formulas inadvertently inserting cell numbers

Testability - Consider implementing error checking within the spreadsheet itself, having a few problems with

known answers that can be run after changes are made.

Version Control - Can a diff be done on the spreadsheet to show exactly what has changed between versions?
This can be accomplished using diff tools for spreadsheets such as ExcelDiff. Using the track changes feature
on spreadsheets also can show changes over time to a single spreadsheet, who made the change and why.

	1. Introduction
	1.1 CCSI Project Overview
	1.2 Purpose and Scope of the CCSI SDP
	The purpose of this software development plan is document the pedigree of the early stage research software and models being developed and used as if DOE Oder 414.1-d was applied. DOE Order 414.1-d includes a graded approach which will be used to risk...
	In addition to new code development in task team 5, statistical modeling is occurring in Task team 1, 2, 3, 4, 6, 7, and 8. The work being done using a number of open source, National Laboratory, and commercial tools. The iterative modeling taking pl...

	1.3 CCSI Software Development and Modeling Activities
	1.3.1 Task Team One, Basic Data and Models, is developing models that can be embedded into models used by tasks 2-4. The team is using the open source statistical modeling tool R version 2.1.3.2 to develop models. Models are developed using a C like l...
	1.3.2 Task Team Two, Particle and Device Scale Models, is using MFIX (a Fortran Multiphase Flow with Interphase eXchange) and Ansys Fluent , which are Computational Fluid Dynamics (CFD) codes.
	MFIX is a general purpose computer code developed at the National Energy Laboratory (NETL) for describing the hydrodynamics, heat transfer, and chemical reactions in fluid systems. MFIX has been used for describing bubbling and circulating fluidized b...
	ANSYS FLUENT software contains the broad physical modeling capabilities needed to model flow, turbulence, heat transfer, and reactions for industrial applications ranging from air flow over an aircraft wing to combustion in a furnace, from bubble colu...
	1.3.3 Task Team Three, Process Synthesis and Design, is primarily using the Aspen Custom Modeler (ACM) and GAMS (General Algebraic Modeling System).
	Aspen Custom Modeler (ACM) is used to quickly create rigorous models of processing equipment and to apply these equipment models to simulate and optimize continuous, batch, and semi-batch processes. It is used across many industries, including chemica...
	The General Algebraic Modeling System (GAMS) is a high-level modeling system for mathematical optimization. GAMS is designed for modeling and solving linear, nonlinear, and mixed-integer optimization problems. The system is tailored for complex, large...
	The GAMS algebraic modeling language (AML) is formally similar to commonly used forth generation programming languages. GAMS contains an integrated development environment (IDE) and is connected to a group of third-party optimization solvers. Among th...
	GAMS facilitates the users to implement a sort of hybrid algorithms combining different solvers in a seamless way. Models are described in concise algebraic statements which are easy to read, both for humans and machines. NETL has also developed some ...
	1.3.4 Task Team Four, Plant Operations and Control, is developing dynamic models in ACM and Aspen Dynamics.
	Aspen Plus Dynamics extends Aspen Plus steady-state models into dynamic process models, enabling design and verification of process control schemes, safety studies, relief valve sizing, failure analysis, and development of startup, shutdown, rate-chan...
	1.3.5 Task Team Five, Integration Framework, currently developing interfaces among tools and tools for building reduced order models. See figure 2 below. Explanation is in section 1.4.
	1.3.6 Task Team Six, Uncertainty Quantification and Optimization is focusing on UQ, and using PSUADE a C++ based UQ tool developed by Charles Tong of LLNL. The PSUADE code has been subjected to static analysis using the Klocwork static analyzer tool. ...
	1.3.7 Task Team Seven, Risk Analysis and Decision Making, is developing decision tools. Currently, these are largely spreadsheet models with some underlying Matlab.
	MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation programming language. Developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user inte...
	1.3.8 Task Team Eight, Software Development Support, is creating a Drupal wiki to support collaboration, a Subversion code repository, and Trac and Jira trackers for defect tracking and user story tracking. The SVN repository is being used for the Dru...
	Drupal is a free and open-source content management system (CMS) and content management framework (CMF) written in PHP and distributed under the GNU General Public License.[2][3][4] It is used as a back-end system for at least 1.5% of all websites wor...
	Apache Subversion (often abbreviated SVN, after the command name svn) is a software versioning and a revision control system distributed under a free license. Developers use Subversion to maintain current and historical versions of files such as sourc...
	JIRA is a proprietary issue tracking product, developed by Atlassian, commonly used for bug tracking, issue tracking, and project management. The product name, JIRA, is not an acronym but rather a truncation of "Gojira", the Japanese name for Godzilla...
	1.3.9 Task Team Nine, Industrial Challenge Problems, is not currently developing software or using modeling tools.
	1.3.10 Task Team Ten, Industrial Collaboration, is not currently developing software or using modeling tools.

	1.4 Organization of CCSI Task Set Five Codes
	The following block diagram (figure 2) portrays the CCSI research codes currently under development in task 5.
	Figure 2.
	The primary purpose of the CCSI research codes under development are to provide interfaces or “glue” for existing COTS (Commercial off the shelf) and GOTS (Government of the Shelf) codes to operate with each other. The CCSI created tool chain allows p...

	2 Project Risk and Grading
	3 Required Software Quality Practices Mapped To Waste IPSC
	4 Method of Meeting Activity
	4.1 Software project management and quality planning (complies):
	4.2 Software risk management (complies):
	4.3 Software configuration management (complies):
	4.4 Procurement and supplier management (complies):
	4.5 Software requirements identification and Management (complies):
	4.6 Software design and implementation (complies):
	4.7 Software safety (complies):
	4.8 Verification and validation (complies):
	4.9 Problem reporting and corrective action (complies):
	4.10 Training of personnel in the design, development, use, and evaluation of safety software (complies):
	4.11 Important Data

	Appendix A Acronyms, Abbreviations, and Terms
	Appendix B Risk Consequence Tiers
	B.1 CCSI Risk Consequence Severity
	B.2 CCSI Risk Due To Software Environment
	B.3 Risk Level

	Appendix C Good Practices for Modeling Tools and Data
	Appendix D Good Practices for Spreadsheet Models

