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MOTIVATION 

 Under the auspices of US DOE’s Carbon Capture 
Simulation Initiative (CCSI), government and university 
researchers are collaborating to develop computational 
models and tools for various post-combustion CO2 
capture technologies 

 
 CO2 capture processes must be designed to operate 

efficiently in the face of disturbances that are typical of 
commercial-scale power plants 
 

 Dynamic process models and advanced process control 
can be used to ensure efficient operation of these CO2 
capture technologies. 
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National Labs Academia Industry 

Identify  
promising  
concepts 

Reduce the time  
for design & 

troubleshooting 

Quantify the technical 
risk, to enable reaching 

larger scales, earlier 

Stabilize the cost 
during commercial 

deployment 
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Computational Tools to Accelerate  
Next-Generation Technology Development 
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MODEL DEVELOPMENT 
Solid Sorbent-based CO2 Capture and Compression 

• Adsorber 
 Bubbling Fluidized Bed (BFB) 

• Regenerator 
• BFB 
• Moving Bed (MB) 

• CO2 Compression 
• Balance of Plant 

Adsorber 
(CO2 Capture) 

Solid Sorbent 
Regenerator 

Balance 
of Plant 

CO2 
Compression 

Rich 
Sorbent 

Flue 
Gas 

Lean 
Sorbent 

To 
Pipeline 
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MODEL DEVELOPMENT 
Bubbling Fluidized Bed (BFB)  

• 1-D two-phase, pressure-driven, 
non-isothermal dynamic model 

• Model is flexible – adsorber or 
regenerator,  cooler or heater 
depending on the application 
 

• Transient species conservation and energy balance equations for 
both gas and solid phases in all three regions 

• Rigorous hydrodynamic models 
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MODEL DEVELOPMENT 
Moving Bed Reactor 

 1-D two-phase pressure-driven non-isothermal dynamic 
model of a moving bed reactor for the regenerator 

Model Assumptions 
 Vertical shell & tube type reactor 
 Gas and solids flows are modeled by plug 

flow model with axial dispersion. 
 Particles are uniformly dispersed through 

the reactor with constant voidage 
 Particle attrition ignored 
  Temperature is uniform within the particles 
 

Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out

• Gaseous species: CO2, N2, H2O 
• Solid phase components: bicarbonate,  
     carbamate, and physisorbed water 
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 Dynamic model of a multi-stage integral gear compressor  system with inter-stage 

coolers, knock-out drums, and TEG absorption system has been developed. 
 
 Performance curves obtained from a commercial vendor have been used for 
    calculating off-design performance.   

MODEL DEVELOPMENT 
CO2 Compression System Model 
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Results  
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 High-fidelity models are computationally expensive 
 May contains hundreds of thousands of DAEs 
 Require small time steps to handle stiffness 

 Dynamic reduced models (D-RMs) could speed up a few 
orders of magnitude 

 Two types of D-RMs 
 Reduced order D-RMs 

• Generated based on equations involved, e.g. POD 
• Generation method is generally model specific 
• On-going CCSI project for BFB reactor 

 Data-driven D-RMs 
• Based on pre-computed results from repeated simulations of a 

high-fidelity dynamic model over a range of input conditions 
 Can be used for off-line operator training systems (OTS) and on-line 

implementations of advanced process control (APC) and real-time 
optimization (RTO) 

Why Dynamic Reduced Models? 
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Work Flow of D-RM Builder 
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D-RM for the BFB Adsorber 

 D-RM generated based on open-loop ACM model 
 Inputs: 

• Flue gas flow rate: 6,075 to 7,425 kmol/hr 
• Sorbent flow rate: 540,000 to 660,000 kg/hr 

 Output: 
• CO2 removal (Fraction of CO2 in flue gas removed) 

 DABNet model with pole values optimized 
 CPU time required for ACM simulations 

• Approximately 50 minutes for 2500 sampling steps 
(Sampling time interval at 0.1 second) 
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Training Input Data 
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Training Output Data 
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Validation Output Data 
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 Nonlinear Model Predictive Control (NMPC) using 
DAB-Net DRM model 

 Unscented Kalman Filter (UKF) feedback and 
disturbance estimation technique 

– Accurate capture of true mean and covariance of estimates 
 Extended Kalman Filter (EKF) with Autocovariance 

Least-Squares (ALS) disturbance-estimation technique 
 Interior Point Optimizer (IPOPT) 

– Faster and more effective optimization routine for solving large-scale 
nonlinear programming (LS-NLP) 

 Advanced Multi-Step NMPC (amsNMPC) 
– Deals with NLP problems where solution time > sampling period 
– Proven nominal stability 

Multiple-Model Predictive Control (MMPC) with 
Multiple Disturbance Models 

– Capture nonlinearity using model bank across wide operating regimes 
– Prospective alternative to NMPC 
– Significantly low computation cost (compared to NMPC) 
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APC FRAMEWORK: 
Modes of Operation 
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APC FRAMEWORK: 
Formulation (control models & objectives) 
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APC FRAMEWORK: 
End-User Workflow 
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Conclusions 

1. 1D non-isothermal, pressure-driven dynamic models of a two-stage BFB 
adsorber-reactor, a MB regenerator, an integral gear CO2 compression 
system along with the balance of the plant have been developed in ACM 
and gPROMS for solid-sorbent CO2 capture.  
 

2. The DAB-Net D-RM is found to be satisfactory for the BFB reactor. 
 

3. DAB-Net based NMPC was developed and was shown to provide superior 
control response for highly nonlinear systems. The MMPC formulation 
(especially w/ look-ahead disturbance) is found to provide fast and superior 
load-tracking performance for overall CO2 capture. 
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 As part of the National Energy Technology Laboratory’s Regional University Alliance 

(NETL-RUA), a collaborative initiative of the NETL, this technical effort was 
performed under the RES contract DE-FE0004000. 

 Disclaimer: 
 This presentation was prepared as an account of work sponsored by an agency of 

the United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or implied, 
or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof. 
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Thank you 
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Questions? 
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