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MOTIVATION

» Under the auspices of US DOE’'s Carbon Capture
Simulation Initiative (CCSI), government and university
researchers are collaborating to develop computational
models and tools for various post-combustion CO,
capture technologies

» CO, capture processes must be designed to operate
efficiently in the face of disturbances that are typical of
commercial-scale power plants

» Dynamic process models and advanced process control
can be used to ensure efficient operation of these CO,
capture technologies.
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Carbon Capture Simulation Initiative
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Next-Generation Technology Development
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MODEL DEVELOPMENT
Solid Sorbent-based CO, Capture and Compression

e Adsorber To
> Bubbling Fluidized Bed (BFB) Pipeline
 Regenerator [
- BFB

Cco,

* Moving Bed (MB) Compression

CO, Compression

» Balance of Plant Lean [
Sorbent
Flue Adsorber <« Balance <+— Solid Sorbent
Gas | (CO, Capture)  __|of Plant | | Regenerator
Sorben

57th Annual ISA POWID Symposium, 2-4 June 2014, Scottsdale, Arizona /



MODEL DEVELOPMENT @
Bubbling Fluidized Bed (BFB)
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MODEL DEVELOPMENT @
Moving Bed Reactor

» 1-D two-phase pressure-driven non-isothermal dynamic
model of a moving bed reactor for the regenerator

Solid In
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MODEL DEVELOPMENT @
CO, Compression System Model

» Dynamic model of a multi-stage integral gear compressor system with inter-stage
coolers, knock-out drums, and TEG absorption system has been developed.

» Performance curves obtained from a commercial vendor have been used for
calculating off-design performance.
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Results
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Why Dynamic Reduced Models?

» High-fidelity models are computationally expensive
% May contains hundreds of thousands of DAEs
% Require small time steps to handle stiffness

» Dynamic reduced models (D-RMs) could speed up a few
orders of magnitude

» Two types of D-RMs

% Reduced order D-RMs
« Generated based on equations involved, e.g. POD
« Generation method is generally model specific
« On-going CCSI project for BFB reactor
+ Data-driven D-RMs
« Based on pre-computed results from repeated simulations of a
high-fidelity dynamic model over a range of input conditions
» Can be used for off-line operator training systems (OTS) and on-line
iImplementations of advanced process control (APC) and real-time
optimization (RTO)
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Work Flow of D-RM Builder
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D-RM for the BFB Adsorber

» D-RM generated based on open-loop ACM model
> Inputs:
 Flue gas flow rate: 6,075 to 7,425 kmol/hr
e Sorbent flow rate: 540,000 to 660,000 kg/hr
» QOutput:
« CO,removal (Fraction of CO, in flue gas removed)
» DABNet model with pole values optimized
» CPU time required for ACM simulations

 Approximately 50 minutes for 2500 sampling steps
(Sampling time interval at 0.1 second)
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Training Input Data
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Training Output Data isA)
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Validation Output Data .@«
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APC FRAMEWORK: 15A)
Features

» Nonlinear Model Predictive Control (NMPC) using
DAB-Net DRM model
» Unscented Kalman Filter (UKF) feedback and

disturbance estimation technique
— Accurate capture of true mean and covariance of estimates . I I 1 1

APC

D-RM

» Extended Kalman Filter (EKF) with Autocovariance s s i
Least-Squares (ALS) disturbance-estimation technique r~—~'J L i
> Interior Point Optimizer (IPOPT) i i
‘

— Faster and more effective optimization routine for solving large-scale :
. d2

Yk

nonlinear programming (LS-NLP)

» Advanced Multi-Step NMPC (amsNMPC) —

— Deals with NLP problems where solution time > sampling period
— Proven nominal stability

» Multiple-Model Predictive Control (MMPC) with

yl

Process

Multiple Disturbance Models | .———_ Setpoints
— Capture nonlinearity using model bank across wide operating regimes e e o e
— Prospective alternative to NMPC . gg;zggggm;is)
— Significantly low computation cost (compared to NMPC)

57th Annual ISA POWID Symposium, 2-4 June 2014, Scottsdale, Arizona /



APC FRAMEWORK:
Modes of Operation
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APC FRAMEWORK:
Formulation (control models & objectives)
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APC FRAMEWORK:
End-User Workflow
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APC FRAMEWORK
Results: DAB-Net based NMPC (comparison)
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APC FRAMEWORK
Results: DAB-Net based NMPC (input constraints)
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APC FRAMEWORK
Results: MMPC responses ravessural 5 e sy e

gas ramp-up.
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Conclusions isA)

1. 1D non-isothermal, pressure-driven dynamic models of a two-stage BFB
adsorber-reactor, a MB regenerator, an integral gear CO, compression
system along with the balance of the plant have been developed in ACM
and gPROMS for solid-sorbent CO, capture.

2. The DAB-Net D-RM is found to be satisfactory for the BFB reactor.
3. DAB-Net based NMPC was developed and was shown to provide superior
control response for highly nonlinear systems. The MMPC formulation

(especially w/ look-ahead disturbance) is found to provide fast and superior
load-tracking performance for overall CO, capture.
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Thank you

Questions?
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