Outline

• Carbon Capture Simulation Initiative (CCSI)
 – Membrane Device Model
• Gas Permeation Carbon Capture with Boiler Air Sweep
 – Compression/Vacuum Process Configuration
 – All Compression Process Configuration
 – Process Decision Variables
 – Process Constraints
• Example
• Conclusions
Carbon Capture Simulation Initiative

- Identify promising concepts
- Reduce the time for design & troubleshooting
- Quantify the technical risk, to enable reaching larger scales, earlier
- Stabilize the cost during commercial deployment

National Labs
- Carnegie Mellon
- Princeton University
- West Virginia University
- Boston University

Academia
- Fluor
- ADA
- B&W
- GE
- Alstom
- SOUTHERN COMPANY
- Duke Energy
- Boeing
- Dupont
- Worley Parsons
- ExxonMobil
- Eastman
- U.S. Department of Energy

Industry
Membrane Device Scale Model

- Hollow Fiber 1D steady state distributed model
- Optional sweep stream
- Counter-current flow
- Hollow fiber dimensions specified at average values
- Neglects pressure drop in feed side
- CO\textsubscript{2} Permeance: 1000 - 5000 GPU
- Selectivity: 50 - 200
- Implemented in ACM® and gPROMS®
Multi-Stage Processes with Air Sweep

- Multi-stage processes are required due to characteristics of flue gas stream to be treated and 90% capture rate
- Sweep stream reduces membrane area and/or required compression power
- Integrated process: Must be analyzed with interacting parts of the power generation system
Process Decision Variables

Compression/Vacuum
- M1 Feed Inlet Pressure
- M1 Permeate Outlet Pressure
- Liquefaction Pressure
- Liquefaction Temperature
- Air Sweep Flow Rate
- M1 CO₂ Stage Cut
- M2 CO₂ Stage Cut
- M3 CO₂ Stage Cut

All Compression
- M1 Feed Inlet Pressure
- Air Sweep Flow Rate
- M1 CO₂ Stage Cut
- M2 CO₂ Stage Cut
- M3 CO₂ Stage Cut
Process Constraints

Increased Flue Gas Flow
- The effect of feeding CO$_2$-enriched air to the boiler is uncertain.
- Increased flow due to recirculation of gases could have significant impact in boiler and auxiliary equipment.
- Constraint: $\leq 15\text{mol}\%$

Sequestration Stream Purity
- Presence of impurities in the sequestration stream have significant downstream consequences.
- Determines decision variables related to polishing section affecting entire process.
- Constraint: $\geq 95\text{mol}\%$ (CO$_2$)
• Process variables are optimized with respect to annual cost function
• Overall parasitic power demand is calculated from process model output, capital cost is obtained from equipment cost correlations
• 90% Capture Rate, sequestration stream purity, and increased volumetric flow constraints are included in optimization

• Multiple levels of improvement for membrane properties were analyzed
Potential System Improvements with Advanced Membranes

- All compression performance is comparatively limited even for most advanced membrane
- Improvements in permeance are not linear with improvement in annual cost
Optimized Variables for C/V Design

<table>
<thead>
<tr>
<th>Permeance (GPU)</th>
<th>1000</th>
<th>4000</th>
<th>1000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selectivity 50</td>
<td></td>
<td>Selectivity 200</td>
<td></td>
</tr>
<tr>
<td>M1 Feed P (bar)</td>
<td>2.08</td>
<td>1.46</td>
<td>2.11</td>
<td>1.32</td>
</tr>
<tr>
<td>Liq. P (bar)</td>
<td>26.8</td>
<td>30.7</td>
<td>22.3</td>
<td>22.3</td>
</tr>
<tr>
<td>Sweep F (kmol/hr)</td>
<td>64300</td>
<td>68800</td>
<td>62400</td>
<td>66700</td>
</tr>
<tr>
<td>M1 CO₂ Stage Cut</td>
<td>0.512</td>
<td>0.536</td>
<td>0.488</td>
<td>0.451</td>
</tr>
</tbody>
</table>

- High permeance membrane reduces optimized compression but results in lower recirculation of CO₂
- High selectivity membrane allows higher recirculation of CO₂ and reduces the optimized liquefaction pressure
Effects of Membrane Sweep with Boiler Constraints

- O₂ reverse permeation results in additional air to the boiler reducing flue gas CO₂ partial pressure
- This effect is greater with higher permeance
Summary

• Flexible system-level models were developed in order to evaluate the performance of gas permeation membranes for post-combustion carbon capture

• Optimal designs were generated using CCSI’s Simulation Based Optimization Framework under different scenarios
 – Improvements to membrane properties
 – Scale and type of power generation system
 – Improvements to auxiliary equipment cost or performance

• Boiler constraints and oxygen depletion in the air sweep limit the performance of the membrane capture system
Questions?

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Extra - Asymmetric Membrane Model

- Fluids on either side of the selective layer are in equilibrium at the interface.
- Pressure across the selective layer is constant at the highest value.

\[P_i = K_i^G \cdot D_i \]

\[Q_i = \frac{P_i}{\delta_m} \]

\[\alpha_i = \frac{Q_{CO_2}}{Q_i} \]

\[N_i = \frac{Q_{CO_2}}{\alpha_i} \left(p_h x_{h,i} - p_l x_{b,i} \right) \]

\[N_t = \sum_{j}^{n} N_j \]
Extra - 1D Hollow Fiber Model

![Discretized Axial Nodes](image1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Typical</th>
<th>This Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner fiber Diameter (μm)</td>
<td>100-700*</td>
<td>400</td>
</tr>
<tr>
<td>Outer fiber diameter (μm)</td>
<td>200-800*</td>
<td>600</td>
</tr>
<tr>
<td>Effective fiber length (m)</td>
<td>0.15-1.50*</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Isothermal
- Shell Feed
- Perfectly cylindrical fibers
- Shell flow evenly distributed
- Counter-current flow
- Dense skin layer faces the shell side

\[J_i = 2\pi r_{fi} n_f N_i \]
\[J_t = \sum_{j=1}^{n} J_j \]
\[\frac{dF_{per}}{dl} = -J_t \]
\[\frac{dP_{per}}{dl} = 0 \]
\[F_{per} \frac{dZ_{per,i}}{dl} = J_t Z_{per,i} - J_i \]