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Carbon Capture Simulation Initiative

Identify Reduce the time Quantify the technical Stabilize the cost
promising for design & ‘ risk, to enable reaching ‘ during commercial
concepts troubleshooting larger scales, earlier deployment
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Membrane Device Scale Model

PERMEATE

 Hollow Fiber 1D steady state
distributed model

e Optional sweep stream

e Counter-current flow

 Hollow fiber dimensions
specified at average values

 Neglects pressure drop in feed
side

e CO, Permeance: 1000 - 5000
GPU

o Selectivity: 50 - 200

e |mplemented in ACM® and
gPROMS®
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Multi-Stage Processes with Air Sweep
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 Multi-stage processes are required due to
characteristics of flue gas stream to be treated and
90% capture rate

 Sweep stream reduces membrane area and/or required
compression power

* Integrated process: Must be analyzed with interacting
parts of the power generation system
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Compression/Vacuum Process*
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"Merkel et al. (2010) “Power Plant Post-Combustion Carbon Dioxide MULTI-STAGE COMPRESSOR BLOCK

Capture: An Opportunity for Membranes” Journal of Membrane Science.
359, p. 126-139
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All Compression Process
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Process Decision Variables
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Compression/Vacuum
« M1 Feed Inlet Pressure .
« M1 Permeate Outlet Pressure .
e Liquefaction Pressure .
e Liquefaction Temperature .

 Air Sweep Flow Rate
« M1CO, Stage Cut
« M2CO, Stage Cut
M3 CO, Stage Cut
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MULTI-STAGE

COMPRESSOR BLOCK

All Compression

M1 Feed Inlet Pressure
Air Sweep Flow Rate
M1 CO, Stage Cut

M2 CO, Stage Cut

M3 CO, Stage Cut
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Process Constraints

AIR [———————=——=—=——————————;  TOBOILER |
i pERMEATEi COMPRESSION & TO SEQUESTRATION
: SWEEP X :RETENTATE; DEHYDRATION g
FEEDI _____________________
Increased Flue Gas Flow Sequestration Stream Purity
« The effect of feeding CO,-  Presence of impurities in the
enriched air to the boiler is sequestration stream have
uncertain significant downstream
 Increased flow due to conseguences
recirculation of gases could  Determines decision variables
have significant impact in boiler related to polishing section
and auxiliary equipment affecting entire process
 Constraint: =15mol% e Constraint: 295mol% (CO,)
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Example

 Process variables are optimized with respect to
PC Plant Model annual cost function
SC 650 MWe Net . .

Overall parasitic power demand is calculated from
process model output, capital cost is obtained
from equipment cost correlations
Compression System « 90% Capture Rate, sequestration stream purity,

Flexible Modular Models

PC Plant
Configuration

Models ; ; :
nteoralCear Campressorn and increased volumetric flow constraints are
Model included in optimization
Multi-Stage Gas Permeation Carbon Capture Model
1D Gas Permeation = I —LLL i
Carbon Capture Device B )
Model 5 o |
Simulation Based =1 |
Optimization with
GA — Excel Interface 1
Cost Model LD Dy DD —

Multiple levels of improvement for membrane

‘ properties were analyzed
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Potential System Improvements with
Advanced Membranes
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Permeance (GPU)
e All compression performance is comparatively limited

even for most advanced membrane
 |mprovements in permeance are not linear with
Improvement in annual cost
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Optimized Variables for C/V Design

Permeance

(GPU) 1000 4000 1000 4000
Selectivity 50 Selectivity 200
M1 Feed P 2.08 2.11 1.32
(bar)
Lig. P
(bar) 26.8 22.3 22.3
Sweep F
(kmol/hr) 64300 62400 66700
M1 CO,
Stage Cut 0.512 0.488 0.451

 High permeance membrane reduces optimized
compression but results in lower recirculation of CO,

* High selectivity membrane allows higher recirculation of
CO, and reduces the optimized liquefaction pressure
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Effects of Membrane Sweep with Boiler

Constraints
N TO BOLER |
| “PERMEATE: C/V at Selectivity = 50
i SWEEP |RETENTATE c
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Summary

* Flexible system-level models were developed in order to
evaluate the performance of gas permeation membranes
for post-combustion carbon capture

« Optimal designs were generated using CCSI’s
Simulation Based Optimization Framework under
different scenarios

— Improvements to membrane properties
— Scale and type of power generation system

— Improvements to auxiliary equipment cost or
performance

« Boller constraints and oxygen depletion in the air sweep
limit the performance of the membrane capture system
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Questions?

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof.
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Extra - Asymmetric Membrane Model

* Fluids on either side of the selective
layer are in equilibrium at the
Interface

* Pressure across the selective layer
IS constant at the highest value
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Extra - 1D Hollow Fiber Model

FEED
(Flue Gas)

Discretized Axial Nodes

PERMEATE SWEEP
(CO; Enriched) (Optional)
Shell =2
RETENTATE
(CO; Depleted)
Variable Typical This Model
Inner fiber Diameter (um) 100-700" 400
o Outer fiber diameter (um) 200-800" 600
7 ?;’Eg Effective fiber length (m) 0.15-1.50° 1.00
Zper‘:'([)
| ” e |sothermal e Shell flow evenly distributed

Fiber Bore

e Shell Feed

J, =2nr n,N,
n
Fredl) _
Pl 3=,
Zn’t‘.r(‘g) )

*Chowdhury et al. (2005) “A New Numerical Approach for a Detailed Multicomponent Gas Separation
Membrane Model and Aspen Plus Simulation” Chemical Engineering and Technology. 28, p. 773-782.

R
S CCSI_ ingn ==y

EEEEEEEEE

e Perfectly cylindrical fibers e

e Counter-current flow
Dense skin layer faces the shell side
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