

Thermodynamic Modeling of MEA-based CO2 Capture Process with Uncertainty Quantification and Validation with Steady-State Data from a Pilot Plant

Joshua C. Morgan^a, Anderson Soares Chinen^a, Benjamin Omell^a, Debangsu Bhattacharyya^a, Charles Tong^b, David C. Miller^c, John Wheeldon^d, Bill Buschle^e, Mathieu Lucquiand^e

^a Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506, USA
 ^b Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 ^c National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA
 ^d National Carbon Capture Center, 31800 Highway 25, North Wilsonville, AL, 35186, USA

^e School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, UK

AIChE Annual Meeting 2015

CCSI For Accelerating Technology

opment

Rapidly synthesize optimized processes to identify promising concepts Better understand internal behavior to reduce time for troubleshooting

Quantify sources and effects of uncertainty to guide testing & reach larger scales faster

Stabilize the cost during commercial deployment

Outline

- Scope of Work
- Submodel Development
 - Thermodynamic and kinetic models
 - Mass transfer and hydraulic models
- Model Validation
- Conclusions

Outline

• Scope of Work

- Submodel Development
 - Thermodynamic and kinetic models
 - Mass transfer and hydraulic models
- Model Validation
- Conclusions

Gold Standard Solvent Model

- Gold Standard model for comparing different proposals for advanced solvent-based capture technologies
 - Open source
 - Validated framework
 - Well documented
 - Uncertainties quantified
- Aqueous monoethanolamine (MEA) used as baseline
 - Industry standard
 - Extensive amount of data available
- Applicability to novel solvents

Deficiencies in Existing Absorber Models

ProTreat-Optimized Gas Treating, Inc.; CO2SIM-NTNU/SINTEF CHEMASIM-BASF SE; AspenRatesep-modified by IFP

Luo et al., "Comparison and validation of simulation codes against sixteen sets of data from four different pilot plants", Energy Procedia, 1249-1256, 2009

Zhang, et al., Rate-Based Process Modeling Study of **CO₂** Capture with Aqueous Monoethanolamine Solution, Ind. Eng. Chem Res., 48, 9233-9246, 2009

os Alamos

EST. 1943

NAL LABORATOR

Pacific

Deficiencies in Existing Regenerator Models

Luo et al., "Comparison and validation of simulation codes against sixteen sets of data from four different pilot plants", Energy Procedia, 1249-1256, 2009

How to Develop Gold Standard Model

- Property models
 - Valid for absorber and stripper operating conditions
- Hydraulic and mass transfer models
 - Developed simultaneously with relevant properties models using both WWC and packing data
- Uncertainty quantification
- Steady State Validation
- Dynamic Validation*
 - Anderson Soares Chinen
 687g Dynamic Model Development and Validation of a MEA-Based CO₂ Capture System 11/9/2015
 2:36 p.m.
 Salon D (Marriott)

Overall Approach

Stochastic Modeling Methodology

Outline

- Scope of Work
- Submodel Development
 - Thermodynamic and kinetic models
 - Mass transfer and hydraulic models
- Model Validation
- Conclusions

11

Reactive System Thermodynamic Framework

Vapor-Liquid Equilibrium

 $\hat{f}_i^V = \hat{f}_i^L \longrightarrow \hat{\varphi}_i y_i P = \gamma_i^* x_i H_i$ (for solutes)

Activity Coefficient

$$ln(\gamma_i) = \frac{1}{RT} \frac{\partial (nG^{ex})}{\partial n_i} \bigg|_{T,P,n_{j\neq i}} \qquad \gamma_i^* = \frac{\gamma_i}{\lim_{x_i \to 0} \gamma_i}$$

Reaction Equilibrium Constant

 $\Delta G_{rxn} = -RTln(K)$

Enthalpy Equations

Excess Enthalpy

$$H^{ex} = -RT^2 \sum_{i} x_i \left(\frac{\partial \ln \gamma_i}{\partial T} \right) \bigg|_{P,x}$$

Heat Capacity

$$H_m^{l}(T + \Delta T) - H_m^{l}(T) = \int_T^{T + \Delta T} C_{p,m}^{l} dT$$

Heat of Absorption

$$\Delta H_{abs} = \frac{n_{final}H_{final} - n_{initial}H_{initial} - n_{CO_2}H_{CO_2}}{n_{CO_2}}$$

Lawrence Livermore National Laboratory

MEA System Reaction Kinetics

- $2MEA + CO_2 \leftrightarrow MEA^+ + MEACOO^-$ **Reaction 1**
- $MEA + H_2O + CO_2 \leftrightarrow MEA^+ + HCO_3^-$ **Reaction 2**

$$r_1^f = 8.5616 \times 10^{10} \exp\left(-\frac{3963.9}{8.314} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right) a_{MEA}^2 a_{CO_2}$$

$$r_1^r = 24800 \exp\left(-\frac{59600}{8.314}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right) a_{MEACOO} - a_{MEA^+}$$

$$r_2^f = 22991.13 \exp\left(-\frac{49000}{8.314}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right) a_{MEA} a_{CO_2}$$

$$r_2^r = 18.35 \exp\left(-\frac{96230}{8.314}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right) \frac{a_{HCO_3} a_{MEA^+}}{a_{H_2O}}$$

rrrrr

BERKELEY LAE

Model from: Hilliard MD, Ph.D. Dissertation, UT Austin, 2008

Lawrence L

National

Pacific

EST 1943

MEA System Reaction Kinetics - New

Reaction 1 $2MEA + CO_2 \leftrightarrow MEA^+ + MEACOO^-$

Reaction 2 $MEA + H_2O + CO_2 \leftrightarrow MEA^+ + HCO_3^-$

$$r_{1} = 8.5616 \times 10^{10} \exp\left(-\frac{3963.9}{8.314} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right) a_{MEA}^{2} a_{CO_{2}} \left(1 - \frac{a_{MEA} + a_{MEACOO^{-}}}{K_{1} a_{MEA}^{2} a_{CO_{2}}}\right)$$

$$r_{2} = 22991.13 \exp\left(-\frac{49000}{8.314} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right) a_{MEA} a_{CO_{2}} \left(1 - \frac{a_{MEA} + a_{HCO_{3}}}{K_{2} a_{MEA} a_{CO_{2}} a_{H_{2}O}}\right)$$

$$K_{1} = \frac{\gamma_{MEA} + \chi_{MEA} + \gamma_{MEACOO} - \chi_{MEACOO}}{(\gamma_{MEA}^{*} \chi_{MEA})^{2} \gamma_{CO_{2}}^{*} \chi_{CO_{2}}} \bigg|_{eq} \qquad K_{2} = \frac{\gamma_{MEA} + \chi_{MEA} + \gamma_{HCO_{3}} - \chi_{HCO_{3}}}{\gamma_{MEA}^{*} \chi_{MEA} \gamma_{CO_{2}}^{*} \chi_{CO_{2}} \gamma_{H_{2}O} \chi_{H_{2}O}} \bigg|_{eq}$$

EST 1943

Т

VLE Ternary Data

Data Source	Number of Data	Temperature (°C)	CO ₂ loading (mol CO ₂ /mol MEA)	MEA weight percent	CO ₂ partial pressure (kPa)
Aronu et al.	138	40-80	0.017-0.565	15-60	0.007-19
Hilliard	55	40-60	0.114-0.591	17-40	0.005-50
Jou et al.	46	25-120	0.003-0.589	30	0.0015-822
Dugas	50	40-100	0.231-0.500	30-45	0.01-29
Lee et al.	155	25-120	0.065-0.600	6.5-32	0.1-1000
Xu	36	100-130	0.313-0.520	30	12-1000
Ma'mun et al.	19	120	0.155-0.418	30	7-192

Aronu et al., Chem Eng Sci,2011;66:6393-6406

Hilliard MD, Ph.D. Dissertation, UT Austin, 2008

Jou et al., Can J Chem Eng, 1995;73:140-147

Dugas RE, Ph.D. Dissertation, UT Austin, 2009

Lee et al., J Appl Chem Biotechn, 1976;26:541-549

Xu Q, Ph.D. Dissertation, UT Austin, 2011

Ma'mun et al., J Chem Eng Data, 2005;50:630-634

Ternary VLE Model Fit (30 wt%)

16

Binary VLE Model Fit

Txy Diagrams (data from Cai et al.)

Tochigi et al., J Chem Eng Data, 1999;44:588-590

Heat of Absorption Comparison

Data from: Kim et al., Energy Procedia,2014;63:1446-1455

VLE Model Uncertainty Quantification

CO₂ Partial Pressure for 80°C and 30 wt% MEA

Prior Distribution

Posterior Distribution

Outline

- Scope of Work
- Submodel Development
 - Thermodynamic and kinetic models

Mass transfer and hydraulic models

- Model Validation
- Conclusions

Integrated Mass Transfer Model Development

Usual approach: Sequential regression

FOQUS capability: Simultaneous regression

rrrr

BERKELEY LAE

CO₂ Weight Fraction in Outlet Flue Gas

Lawrence Livermore National Laboratory

Experimental data from: Tobiesen et al., AIChE Journal, 2007;53:846-865

os Alamos

EST. 1943

NAL LABORATOR

Mass Transfer and Hydraulic Model Results

- Final model form for hydraulics and mass transfer:
 - Pressure drop: Billet and Schultes (1999)
 - Holdup: Tsai (2011)
 - Mass transfer coefficients: Billet and Schultes (1993)
 - Interfacial area: Tsai et al. (2012)
- Model parameters regressed for Mellapak Plus[™] 252Y

Pressure drop comparison (Pa/m)

Experimental Data from: Tsai RE, Ph.D. Dissertation, UT Austin, 2010

Alamos

Outline

- Scope of Work
- Submodel Development
 - Thermodynamic and kinetic models
 - Mass transfer and hydraulic models
- Model Validation
- Conclusions

CCSI team conducted tests at NCCC

NCCC vs Other Pilot Plants

CO ₂ Capacity (tpd)	Source	Abso	orber	Regenerator		
	Capacity (tpd)	of Flue Gas	Diameter (cm)	Height (m)	Diameter (cm)	Height (m)
UT, Austin	3.0	Non- coal	42.7	6.1	42.7	6.1
NTNU/ SINTEF	0.3	Non- coal	15.0	4.4	10.0	3.9
ITC, Regina	1.0	Non- coal	33.0	7.1	33.0	10.0
ITT, Stuttgart	0.3	Non- coal	12.5	4.2	12.5	2.5
Esbjerg CASTOR	24.0	Coal	110.0	17.0	110.0	10.0
NCCC (PSTU)	10.0	Coal	64.1	18.5	59.1	12.1

NCCC Steady State Testing

- Runs selected from test matrix developed by CCSI team
- Total of 23 tests performed
- Range of variables/operating conditions

Variable	Range
Absorber Inlet Flue Gas Flow (kg/hr)	1320-2900
Lean Solvent Flowrate (kg/hr)	3175-11800
Absorber L/G ratio (molar)	1.7-10.4
Reboiler Duty (kW)	166-677
Lean Solvent Loading (mol CO ₂ /mol MEA)	0.045-0.287
Rich Solvent Loading (mol CO ₂ /mol MEA)	0.198-0.343
Inlet Flue Gas CO ₂ Volume %	9-11
Number of Beds in Absorber	1-3
Presence of Intercooling in Absorber	Yes/No

Uncertainty of the Measurement Techniques

- Dynamic Test Runs: Gas Chromatography (GC) for Amine Concentration and Bench Equivalence Point (EQP) Base Titration (CO₂ Concentration)
- Steady State Runs: Online EQP Acid Titration (Amine Concentration) and Online EQP Base Titration (CO₂ Concentration)
- Analysis Techniques Repeatability Evaluation
- Analysis Techniques Uncertainty Evaluation

Critical Model Parameters:

Portion of Campaign	Dynamic	Steady State
Amine Concentration (wt% MEA Nominal) % rel expanded uncertainty (k=2)	4.9%	7.3%
CO ₂ Loading (mol CO ₂ / mol MEA) % rel expanded uncertainty (k=2)	7.4%	10.7%

Steady State Absorber Validation

CO₂ Capture Prediction

Rich Loading Comparison

Percent Deviation Between Data and Model Values (Summary)

	Data CO ₂ Capture- Liquid vs. Gas Discrepancy	CO ₂ Capture-Gas Side	CO₂ Capture- Liquid Side	Rich Loading
Maximum	9.19	8.09	10.84	7.36
Average	3.62	2.69	3.97	2.69

EST. 1943

Steady State Absorber Validation No parameter tuned

Lawrence Livermore National Laboratory

Sample Temperature Profiles Case K3

Relative column positions of 0 and 1 correspond to top and bottom of column, respectively

Case	L/G (mass)	Beds/Intercooling	Lean Loading (mol CO ₂ /mol MEA)
K3	1.41	3/Yes	0.091
K6	3.02	3/Yes	0.347
K20	2.38	1/No	0.075

Carbon Capture Simulation Initiative

rrrrr

BERKELEY LAB

Steady State Regenerator Validation

Lean Loading Comparison

Lean Solvent Temperature Comparison

Percent Deviation Between Data and Model Values (Summary)

	Lean Loading	Lean Solvent Temperature
Maximum	16.53	1.14
Average	6.39	0.48

Lawrence Livermore

National Laboratory

Steady State Regenerator Validation

No parameter tuned

Outline

- Scope of Work
- Submodel Development
 - Thermodynamic and kinetic models
 - Mass transfer and hydraulic models
- Model Validation
- Conclusions

Conclusions

- Developed complete process model of MEA carbon capture system
 - Includes consistent thermodynamic framework
- Model adequately predicts performance of NCCC
 absorber and stripper
 - Model parameters not adjusted to improve fit of model to plant data
- Future work
 - Complete uncertainty quantification of full process model
 - Apply methodology to novel solvent systems

Acknowledgements

This research was conducted through the Carbon Capture Simulation Initiative (CCSI), funded through the U.S. DOE Office of Fossil Energy.

A portion of this work was conducted as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL; this technical effort was performed under the RES contract DE-FE0004000.

The authors would like to thank Prof. Gary T. Rochelle from The University of Texas at Austin for sharing the Phoenix model. The authors sincerely acknowledge valuable discussions with Prof. Rochelle and Brent Sherman from The University of Texas at Austin

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

