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For Accelerating Technology Development 
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• Research Objectives and Motivation 
• Overall Methodology 
• Results 

– Viscosity model 
– Density model 
– Surface tension model 
– Application to absorber model 

• Future Work 
 

Outline 
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• Develop robust algorithm for uncertainty quantification of 
CO2 based carbon capture system 

• Starting point: “Gold Standard” MEA model 
– 30% aqueous MEA solution is industry standard 

• Deterministic models of system have been considered 
– “Phoenix Model” (Rochelle Group at UT-Austin) used 

as baseline in this work 
 

Research Motivation 
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Deterministic and Stochastic Modeling 

Deterministic Modeling 
• Single value of  

– Predictor variables 
– Model parameters 
– Output variables 

• Parameters calibrated 
from experiments 
– Best fit methods 

 

Stochastic Modeling 
• Model inputs and outputs 

are probability 
distributions 

• Rationale 
– Variability of 

measurements (input 
uncertainty) 

– Physical properties 
• Experimental data 

uncertainty  
• Model uncertainty 

 



6 

TM 

Overall Approach 

Focus of this work:  
Viscosity, Density, Surface Tension 
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Stochastic Modeling Methodology 
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• Computationally inexpensive surrogate models 
• Method 

– Multivariate Adaptive Regression Splines (MARS) 
• Procedure 

– Generate input sample 
– Collect output from model simulation 
– Select a response surface scheme and perform fitting 
– Validate the response surface 

 

Response Surface Analysis 
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Stochastic Modeling Methodology 
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• Bayesian inference seeks to update prior beliefs of 
parameter uncertainties in view of data 
– Idea: scan intelligently the prior parameter uncertainty 

space to identify values that match well with available 
data 

– Algorithm: Markov Chain Monte Carlo (MCMC) 
method using Gibbs sampling 

 

Bayesian Inference 
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Stochastic Modeling Methodology 
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Down-selection by Parameter Screening 



13 

TM 

Viscosity Model 
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Viscosity Model/Data Comparison 

Data points from Amundsen et al., Journal of Chemical & Engineering Data, 2009, 54, 3096-3100  
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Viscosity Model-Sensitivity Analysis 



16 

TM 

Viscosity Model-Sample Posterior 
Distributions from Bayesian Inference 
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• Three sources of data available for parameter calibration 
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 =

𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑋𝑋𝐻𝐻2𝑂𝑂𝑉𝑉𝐻𝐻2𝑂𝑂 + 𝑋𝑋𝐶𝐶𝑂𝑂2𝑉𝑉𝐶𝐶𝑂𝑂2 + 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝐻𝐻2𝑂𝑂𝑉𝑉∗ + 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝐶𝐶𝑂𝑂2𝑉𝑉∗∗
 

• Modified molecular weight calculation 
• Five uncertain parameters 

– 𝑉𝑉𝐶𝐶𝑂𝑂2 = 𝑎𝑎 
– 𝑉𝑉∗ = 𝑏𝑏 + 𝑐𝑐𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 
– 𝑉𝑉∗∗ = 𝑑𝑑 + 𝑒𝑒𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 

 

Density Model1 

1 Weiland et al., Journal of Chemical & Engineering Data 1998, 43, 378-382 
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Density Model/Data Comparison 
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Surface Tension Model-Original Form1 

• 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝐻𝐻2𝑂𝑂 + ∑ 1 + 𝑏𝑏𝑖𝑖𝑚𝑚𝑖𝑖
(1−𝑎𝑎𝑖𝑖)(1+∑

𝑎𝑎𝑗𝑗
1−𝑎𝑎𝑗𝑗

𝑚𝑚𝑗𝑗)𝑗𝑗=𝐶𝐶𝑂𝑂2,𝑀𝑀𝑀𝑀𝑀𝑀
(𝑥𝑥𝑚𝑚 𝜎𝜎𝑚𝑚 − 𝜎𝜎𝐻𝐻2𝑂𝑂 )

𝑚𝑚=𝐶𝐶𝑂𝑂2,𝑀𝑀𝑀𝑀𝑀𝑀  

• Function of temperature and composition 
• Parameters 𝑎𝑎𝑚𝑚 and 𝑏𝑏𝑚𝑚 regressed individually for data sets 

with a given value of MEA weight fraction 
• Cannot be used to represent solvents over a range of 

temperature and composition 
 

1. Jayarathna et al., Journal of Chemical & Engineering Data, 2013 58, 986-992 
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New Surface Tension Model 
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Surface Tension Model/Data Comparison 
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• Considered stochastic absorber model (Phoenix model) for two 
cases 

– Prior distributions (±10% of deterministic value) for all parameters not eliminated 
by sensitivity matrix methodology 

– Posterior distributions of all parameters not eliminated by sensitivity matrix 
methodology or Bayesian inference output 

• Key input variables for absorber simulation 
– Inlet lean solvent mass flowrate: 3000 kg/hr 
– L/G mass ratio: 4.42 
– Lean solvent concentration: 35.4 wt% MEA; 0.35 mol CO2/mol MEA 

• Effect of parametric uncertainty on percent CO2 capture observed 

 

Case Study: Application of Parametric 
Uncertainty to Absorber Model 
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Case Study Results 
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• Complete physical property models uncertainty 
quantification 
– e-NRTL thermodynamic framework: VLE, heat 

capacity, heat of absorption 
– Diffusivity 

• Propagate all stochastic models (e.g. physical 
properties, kinetics, mass transfer and hydraulics) 
through process simulation 

• Validation of overall stochastic model with process data 
– Steady state data from UT Austin pilot plant 
– Steady state and dynamic data from NCCC 

 

Future Work 
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This presentation was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 

Thank you! 
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