Uncertainty Quantification of Properties Models for an MEA System

Josh Morgana, Debangsu Bhattacharyyaa, Charles Tongb, David C. Millerc

a Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506, USA
b Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
c National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA

January 28-30, 2014
The Second University of Texas Conference on Carbon Capture and Storage
Austin, TX
For Accelerating Technology Development

Identify promising concepts → Reduce the time for design & troubleshooting → Quantify the technical risk, to enable reaching larger scales, earlier → Stabilize the cost during commercial deployment

National Labs

Academia

Industry

Carnegie Mellon

PRINCETON UNIVERSITY

West Virginia University

BOSTON UNIVERSITY

THE UNIVERSITY OF TEXAS AT AUSTIN

Institute for CLEAN AND SECURE ENERGY

THE UNIVERSITY OF UTAH
Presentation Outline

• Research Objectives and Motivation
• Physical Property Model Development
 – Model choice
 – Deterministic modeling
 – Parameter screening
 – Stochastic modeling
• Results
 – Viscosity Model
 – Density Model
 – Surface Tension Model
Research Objectives

• Development of an algorithm for determining physical property models for solvent-based carbon capture with uncertainty quantification (UQ) capability
 – Consider monoethanolamine (MEA) as baseline solvent
 – Use Phoenix Model (University of Texas-Austin) as a starting point

• Validation of models with plant scale data
Model Development Overview

• Identify models that give physical properties as functions of solution conditions (e.g. temperature and composition)
• Deterministic modeling: Calibrate model parameters to fit available experimental data (best fit optimization)
• Parameter screening: Surface response analysis and sensitivity analysis
• Stochastic modeling: Use Bayesian inference to represent model parameters as probability distribution functions
Model Identification

• Use Phoenix model developed by Dr. Rochelle’s group at UT Austin as starting point for model choice
• Started with simple/independent properties (viscosity, density, surface tension)
 – Necessary for design and evaluation of separation equipment (e.g. flooding and mass transfer correlations)
• Solution physical properties given as functions of temperature and composition only
 – Composition represented by two independent variables (generally CO$_2$ loading and MEA weight fraction/percent)
Solution Chemistry

• Represented as ternary MEA-H₂O-CO₂ system in available models and process data

• Simplified electrolytic speciation:

\[2\text{MEA} + \text{CO}_2 \leftrightarrow \text{MEA}^+ + \text{MEACOO}^- \]

\[\text{MEA} + \text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{MEA}^+ + \text{HCO}_3^- \]

– Does not consider presence of other ions (H⁺, OH⁻, CO₃²⁻) found to be in negligible concentration

• Electrolyte presence generates complexity in properties modeling (highly non-ideal solution)
Deterministic Modeling

• Function inputs (variables/parameters) and outputs are represented as single values

• General procedure
 – Gather as much relevant data as possible
 – Optimize model parameters to minimize sum of square error (SSE) between data values and model predictions
Parameter Screening

• Determine parameters to which the model is most sensitive
 – UQ necessary for parameters of high sensitivity
 – Parameters of low sensitivity may be eliminated from UQ analysis not only to avoid unnecessary computation, but also for computational tractability

• Response surface method: qualitative parameter screening

• Sensitivity calculation method: quantitative parameter screening
Response Surfaces

• Multivariate Adaptive Regression Splines (MARS) regression technique
 – Reduces mathematical model into non-parametric form that maintains capability of describing relationships between input and output variables
• Computationally inexpensive
• Generated using PSUADE software developed by LLNL
 – Input: Uniform distribution of model variables and parameter and associated output
 – Output: Response surface
• Parameter sensitivity determined by response surface shape
Sensitivity matrix calculation

- For generic physical property:
 \[S_{ij} = \max \left| \frac{\partial}{\partial \hat{y}_i} \left(\frac{\partial \phi}{\partial x_j} \right) \right| \]
 \[y_i = \bar{y}_i \hat{y}_i \]

- Subject to
 \[\hat{y}_i^L \leq \hat{y}_i \leq \hat{y}_i^U \quad T^L \leq T \leq T^U \quad \alpha^L \leq \alpha \leq \alpha^U \quad X_{MEA}^L \leq X_{MEA} \leq X_{MEA}^U \]

- Normalized version
 \[N_{ij} = \frac{S_{ij}}{\max_{i \in [1,n], j \in [1,m]} S_{ij}} \]

- Parameter sensitivity determined by value of \(N_{ij} \)
- Method may be more convenient than visualizing surface responses
Stochastic Modeling

- Function inputs and outputs are represented as PDFs
- Sources of uncertainty
 - Process variable measurements (input uncertainty)
 - Physical property measurements (output uncertainty)
 - Functional form of physical property models (model uncertainty)
- Bayesian inference may be used to quantify parametric uncertainty
 - Prior distributions of parameters are updated as additional information is acquired (sampling of experimental data)
 - Markov Chain Monte Carlo (MCMC) method using Gibbs sampling
Bayesian Inference

Sets of process variables (sample size M) → Prior distribution of parameters (sample size N) → Mathematical Model → Input vs. Output Observations (sample size M × N) → MARS → Response Surface → Bayesian Inference

Posterior Parameter Distributions

Experimental Data with Uncertainty
Viscosity Model

\[\mu_{sln} = \mu_{H_2O}(T) \exp \left(\frac{(aX_{MEA}+b)T+cX_{MEA}+d)(\alpha(eX_{MEA}+fT+g)+1)X_{MEA}}{T^2} \right) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Given Value</th>
<th>Calibrated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>-0.0838</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2.8817</td>
</tr>
<tr>
<td>c</td>
<td>21.186</td>
<td>33.651</td>
</tr>
<tr>
<td>d</td>
<td>2373</td>
<td>1817</td>
</tr>
<tr>
<td>e</td>
<td>0.01015</td>
<td>0.00847</td>
</tr>
<tr>
<td>f</td>
<td>0.0093</td>
<td>0.0103</td>
</tr>
<tr>
<td>g</td>
<td>-2.2589</td>
<td>-2.3890</td>
</tr>
</tbody>
</table>
Viscosity Model/Data Comparison

$X_{MEA}=20$ $X_{MEA}=30$ $X_{MEA}=40$

Legend
- **Marker**
 - Data
 - Original model
 - New model

Color
- 298.15 K
- 313.15 K
- 323.15 K
- 343.15 K
- 363.15 K
Viscosity Model-Sensitivity Analysis

\[
\begin{align*}
\begin{bmatrix}
\frac{\partial}{\partial a} \left(\frac{\partial \mu}{\partial T} \right) & \frac{\partial}{\partial a} \left(\frac{\partial \mu}{\partial x_{MEA}} \right) & \frac{\partial}{\partial a} \left(\frac{\partial \mu}{\partial \alpha} \right) \\
\frac{\partial}{\partial b} \left(\frac{\partial \mu}{\partial T} \right) & \frac{\partial}{\partial b} \left(\frac{\partial \mu}{\partial x_{MEA}} \right) & \frac{\partial}{\partial b} \left(\frac{\partial \mu}{\partial \alpha} \right) \\
\frac{\partial}{\partial c} \left(\frac{\partial \mu}{\partial T} \right) & \frac{\partial}{\partial c} \left(\frac{\partial \mu}{\partial x_{MEA}} \right) & \frac{\partial}{\partial c} \left(\frac{\partial \mu}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{c}} \left(\frac{\partial \mu}{\partial T} \right) & \frac{\partial}{\partial \hat{c}} \left(\frac{\partial \mu}{\partial x_{MEA}} \right) & \frac{\partial}{\partial \hat{c}} \left(\frac{\partial \mu}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{f}} \left(\frac{\partial \mu}{\partial T} \right) & \frac{\partial}{\partial \hat{f}} \left(\frac{\partial \mu}{\partial x_{MEA}} \right) & \frac{\partial}{\partial \hat{f}} \left(\frac{\partial \mu}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{g}} \left(\frac{\partial \mu}{\partial T} \right) & \frac{\partial}{\partial \hat{g}} \left(\frac{\partial \mu}{\partial x_{MEA}} \right) & \frac{\partial}{\partial \hat{g}} \left(\frac{\partial \mu}{\partial \alpha} \right)
\end{bmatrix} & = \\
\begin{bmatrix}
0.0022 & 0.0089 & 0.1566 \\
0.0019 & 0.0058 & 0.1329 \\
0.0034 & 0.0123 & 0.2176 \\
0.0048 & 0.0134 & 0.3063 \\
0.0009 & 0.0028 & 0.0827 \\
0.0090 & 0.0254 & 1.0000 \\
0.0074 & 0.0186 & 0.7246
\end{bmatrix}
\end{align*}
\]

- \(N = \max \)
Viscosity Model-Surface Response Analysis

Viscosity (mPa-s) vs. CO₂ Loading

f, c, e
Viscosity Model-Posterior Distributions from Bayesian Inference
Density Model

- Three sources of data available for parameter calibration

\[\rho_{sln} = \frac{MW_{sln}}{X_{MEA}V_{MEA} + X_{H_2O}V_{H_2O} + X_{CO_2}V_{CO_2} + X_{MEA}X_{H_2O}V^* + X_{MEA}X_{H_2O}V^{**}} \]

- Solution molecular weight calculation takes electrolyte speciation into account in new model

- Five uncertain parameters
 - \(V_{CO_2} = a \)
 - \(V^* = b + cX_{MEA} \)
 - \(V^{**} = d + eX_{MEA} \)

<table>
<thead>
<tr>
<th>Baseline Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
</tbody>
</table>
Density Model/Data Comparison

- Results shown for one data source only

For each value of r:

- $r=0.2$
- $r=0.3$
- $r=0.4$

![Graphs showing solution density vs. CO$_2$ loading (mol CO$_2$/mol MEA) for different values of r.](image)

Marker
- *: data
- Dashed line: original model
- Solid line: new model

Color
- 303.15 K
- 313.15 K
- 323.15 K
- 333.15 K
Density Model-Sensitivity Analysis

\[
\begin{bmatrix}
\frac{\partial}{\partial \hat{a}} \left(\frac{\partial V}{\partial T} \right) & \frac{\partial}{\partial \hat{a}} \left(\frac{\partial V}{\partial r} \right) & \frac{\partial}{\partial \hat{a}} \left(\frac{\partial V}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{b}} \left(\frac{\partial V}{\partial T} \right) & \frac{\partial}{\partial \hat{b}} \left(\frac{\partial V}{\partial r} \right) & \frac{\partial}{\partial \hat{b}} \left(\frac{\partial V}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{c}} \left(\frac{\partial V}{\partial T} \right) & \frac{\partial}{\partial \hat{c}} \left(\frac{\partial V}{\partial r} \right) & \frac{\partial}{\partial \hat{c}} \left(\frac{\partial V}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{d}} \left(\frac{\partial V}{\partial T} \right) & \frac{\partial}{\partial \hat{d}} \left(\frac{\partial V}{\partial r} \right) & \frac{\partial}{\partial \hat{d}} \left(\frac{\partial V}{\partial \alpha} \right) \\
\frac{\partial}{\partial \hat{e}} \left(\frac{\partial V}{\partial T} \right) & \frac{\partial}{\partial \hat{e}} \left(\frac{\partial V}{\partial r} \right) & \frac{\partial}{\partial \hat{e}} \left(\frac{\partial V}{\partial \alpha} \right)
\end{bmatrix}
\]

\[
\cdot \quad N = 0.1624 \quad 0.1092
\]

\[
= 0.1624 \quad 0.1092
\]

\[
0.0566 \quad 0.0067
\]

\[
0.0277 \quad 0.0022
\]

\[
1.000 \quad 0.3639
\]

\[
0.6199 \quad 0.1628
\]
Density Model-Posterior Distributions from Bayesian Inference
Surface Tension Model-Original Form

\[\sigma_{mix} = \sigma_{H_2O} + \sum_{i=CO_2,MEA} \left(1 + \frac{b_i x_i}{(1-a_i)(1+\sum_{j=CO_2,MEA} a_j x_j)} \right) \left(x_i (\sigma_i - \sigma_{H_2O}) \right) \]

- Parameters \(a_i \) and \(b_i \) regressed individually for data sets with given value of MEA weight fraction
- Cannot be used to represent solvents over a range of temperature and composition
New Surface Tension Model

- Continuous function of temperature, CO$_2$ loading (α), and MEA weight fraction (r) on CO$_2$-free basis

\[
\sigma_{\text{mix}} = \sigma_{H_2O} + (\sigma_{CO_2} - \sigma_{H_2O})f(r, \alpha)x_{CO_2} + (\sigma_{MEA} - \sigma_{H_2O})g(r, \alpha)x_{MEA}
\]

\[
f(r, \alpha) = a + b\alpha + c\alpha^2 + dr + er^2
\]

\[
g(r, \alpha) = f + g\alpha + h\alpha^2 + ir + jr^2
\]

- Functionally similar to original model
- Preserves quality of fit between model and experimental data
Surface Tension Model-Calibrated Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.4558</td>
<td>f</td>
<td>2.3122</td>
</tr>
<tr>
<td>b</td>
<td>-1.5311</td>
<td>g</td>
<td>4.5608</td>
</tr>
<tr>
<td>c</td>
<td>3.4994</td>
<td>h</td>
<td>-2.3924</td>
</tr>
<tr>
<td>d</td>
<td>-5.6398</td>
<td>i</td>
<td>5.3324</td>
</tr>
<tr>
<td>e</td>
<td>10.2109</td>
<td>j</td>
<td>-12.0494</td>
</tr>
</tbody>
</table>
Surface Tension Model/Data Comparison

$r=0.2$

$r=0.3$

$r=0.4$

Marker

- data
- original model
- new model

Color

- 303.15 K
- 313.15 K
- 323.15 K
- 333.15 K
Surface Tension Model-Sensitivity Analysis

\[
\begin{bmatrix}
\frac{\partial}{\partial \alpha} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial \alpha} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial \alpha} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial b} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial b} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial b} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial c} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial c} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial c} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial d} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial d} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial d} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial e} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial e} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial e} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial f} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial f} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial f} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial g} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial g} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial g} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial h} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial h} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial h} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial i} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial i} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial i} \left(\frac{\partial \sigma}{\partial \alpha} \right) \\
\frac{\partial}{\partial j} \left(\frac{\partial \sigma}{\partial T} \right) & \frac{\partial}{\partial j} \left(\frac{\partial \sigma}{\partial r} \right) & \frac{\partial}{\partial j} \left(\frac{\partial \sigma}{\partial \alpha} \right)
\end{bmatrix}
\]

\[
N = \begin{bmatrix}
0.0008 & 0.6143 & 0.5005 \\
0.0002 & 0.1918 & 0.2771 \\
0.0003 & 0.2192 & 0.4816 \\
0.0007 & 0.8493 & 0.4594 \\
0.0005 & 1.0000 & 0.3330 \\
0.0001 & 0.3298 & 0.0158 \\
0.0001 & 0.2782 & 0.1865 \\
0.0000 & 0.0727 & 0.0875 \\
0.0001 & 0.5227 & 0.0148 \\
0.0001 & 0.6702 & 0.0126
\end{bmatrix}
\]
Surface Tension Model-Posterior Distributions from Bayesian Inference
Future Work

- Complete physical properties models/UQ for MEA
 - Vapor-liquid equilibrium
 - Heat capacity
 - Thermal conductivity
 - Diffusion coefficient
- Implement models in Aspen Plus® to allow for quantification of uncertainty in process variables (e.g. capture efficiency)
- Validate models with process data
 - UT-Austin Pilot Plant
 - National Carbon Capture Center (NCCC)
- Shift focus to high viscosity solvents
Thank you!

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.