Uncertainty Quantification of Properties Models: Application to a CO$_2$-Capture System

Josh Morgana, Benjamin Omellaa, Debangsu Bhattacharyyaa, Charles Tongb, David C. Millerc

a Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506, USA
b Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
c National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA

AICHE Annual Meeting 2014
Atlanta, GA
CCSI For Accelerating Technology Development

Identify promising concepts ➔ Reduce the time for design & troubleshooting ➔ Quantify the technical risk, to enable reaching larger scales, earlier ➔ Stabilize the cost during commercial deployment

National Labs

Academia

Carnegie Mellon
PRINCETON UNIVERSITY
West Virginia University
BOSTON UNIVERSITY

Industry

ADA ALSTOM B&W GE
FLUOR SOUTHERN COMPANY AEP AMERICAN ELECTRIC POWER
EXXONMOBIL EASTMAN ANSYS
 парафина

CCSI™ Carbon Capture Simulation Initiative
Outline

- Research Objectives and Motivation
- Overall Methodology
- Results
 - Viscosity model
 - Density model
 - Surface tension model
 - Application to absorber model
- Future Work
Research Motivation

• Develop robust algorithm for uncertainty quantification of CO$_2$ based carbon capture system
• Starting point: “Gold Standard” MEA model
 – 30% aqueous MEA solution is industry standard
• Deterministic models of system have been considered
 – “Phoenix Model” (Rochelle Group at UT-Austin) used as baseline in this work
Deterministic and Stochastic Modeling

Deterministic Modeling
- Single value of
 - Predictor variables
 - Model parameters
 - Output variables
- Parameters calibrated from experiments
 - Best fit methods

Stochastic Modeling
- Model inputs and outputs are probability distributions
- Rationale
 - Variability of measurements (input uncertainty)
 - Physical properties
 - Experimental data uncertainty
 - Model uncertainty
Overall Approach

Focus of this work: Viscosity, Density, Surface Tension
Stochastic Modeling Methodology

Sample from Prior Parameter Distribution
\[\mathbf{\theta} = \mathbf{\theta}_j \ (j = 1, 2, \ldots, N) \]

Predictor Variables (M Observations)
\[\mathbf{x} = \mathbf{x}_i \ (i = 1, 2, \ldots, M) \]

Mathematical Model (\(M \times N \) observations)
\[\varphi_{ij} = F(\mathbf{x}_i, \mathbf{\theta}_j) \]
\((i = 1, 2, \ldots, M; j = 1, 2, \ldots, N) \)

Response Surface Model
\[\varphi \sim F^*(\mathbf{x}, \mathbf{\theta}) \]

Bayesian Inference
\[\pi(\mathbf{\theta}|\mathbf{Z}) \propto P(\mathbf{\theta})L(\mathbf{Z}|\mathbf{\theta}) \]

Experimental Data with Uncertainty
\[\mathbf{Z} = \{ Z_i(\mathbf{x}_i), i = 1, 2, \ldots, M \} \]

Posterior Parameter Distributions
\[\mathbf{\theta}^* \]
Response Surface Analysis

• Computationally inexpensive surrogate models
• Method
 – Multivariate Adaptive Regression Splines (MARS)
• Procedure
 – Generate input sample
 – Collect output from model simulation
 – Select a response surface scheme and perform fitting
 – Validate the response surface
Stochastic Modeling Methodology

Sample from Prior Parameter Distribution
\(\theta = \theta_j \) \((j = 1,2, ..., N)\)

Predictor Variables (M Observations)
\(x = x_i \) \((i = 1,2, ..., M)\)

Mathematical Model \((M \times N\) observations\)
\[\varphi_{ij} = F(x_i, \theta_j) \]
\((i = 1,2, ..., M; j = 1,2, ..., N)\)

Response Surface Model
\[\varphi \sim F^*(x, \theta) \]

Bayesian Inference
\[\pi(\theta | Z) \propto P(\theta) L(Z | \theta) \]

Experimental Data with Uncertainty
\[Z = \{Z_i(x_i), i = 1,2, ..., M\} \]

Posterior Parameter Distributions
\(\theta^* \)
Bayesian Inference

- Bayesian inference seeks to update prior beliefs of parameter uncertainties in view of data
 - Idea: scan intelligently the prior parameter uncertainty space to identify values that match well with available data
 - Algorithm: Markov Chain Monte Carlo (MCMC) method using Gibbs sampling
Stochastic Modeling Methodology

Sample from Prior Parameter Distribution
\[\theta = \theta_j \quad (j = 1,2, \ldots, N) \]

Predictor Variables (M Observations)
\[x = x_i \quad (i = 1,2, \ldots, M) \]

Mathematical Model \((M \times N\) observations\)
\[\varphi_{ij} = F(x_i, \theta_j) \]
\((i = 1,2, \ldots, M; j = 1,2, \ldots, N)\)

Response Surface Model
\[\varphi \sim F^*(x, \theta) \]

Bayesian Inference
\[\pi(\theta | Z) \propto P(\theta)L(Z | \theta) \]

Posterior Parameter Distributions
\[\theta^* \]

Experimental Data with Uncertainty
\[Z = \{Z_i(x_i), i = 1,2, \ldots, M\} \]
Down-selection by Parameter Screening

Response Surface Methodology

Sensitivity Matrix Methodology

\[S_{ij} = \max \left| \frac{\partial}{\partial \hat{y}_i} \left(\frac{\partial \varphi}{\partial x_j} \right) \right| \]

\[y_i = \bar{y}_i \hat{y}_i \]

\(\varphi \): physical property of interest
\(x_j \): variable
\(y_i \): actual parameter
\(\bar{y}_i \): baseline parameter value
\(\hat{y}_i \): parameter deviation term

Subject to: \(T^L \leq T \leq T^U \) \(X_{MEA}^L \leq X_{MEA} \leq X_{MEA}^U \) \(\alpha^L \leq \alpha \leq \alpha^U \) \(\hat{y}_i^L \leq \hat{y}_i \leq \hat{y}_i^U \)

Normalized version

\[N_{ij} = \frac{S_{ij}}{\max_{i \in [1,n], j \in [1,m]} S_{ij}} \]
Viscosity Model

\[\mu_{s,ln} = \mu_{H_2O}(T) \exp\left(\frac{((aX_{MEA} + b)T + cX_{MEA} + d)(\alpha(eX_{MEA} + fT + g) + 1)X_{MEA}}{T^2} \right) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Given Value(^1)</th>
<th>Calibrated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>-0.0838</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2.8817</td>
</tr>
<tr>
<td>c</td>
<td>21.186</td>
<td>33.651</td>
</tr>
<tr>
<td>d</td>
<td>2373</td>
<td>1817</td>
</tr>
<tr>
<td>e</td>
<td>0.01015</td>
<td>0.00847</td>
</tr>
<tr>
<td>f</td>
<td>0.0093</td>
<td>0.0103</td>
</tr>
<tr>
<td>g</td>
<td>-2.2589</td>
<td>-2.3890</td>
</tr>
</tbody>
</table>

Viscosity Model/Data Comparison

Data points from Amundsen et al., Journal of Chemical & Engineering Data, 2009, 54, 3096-3100
Viscosity Model-Sensitivity Analysis

\[N_{fa} = 1 \]
\[N_{ca} = 0.2176 \]
\[N_{ea} = 0.0827 \]
Viscosity Model-Sample Posterior Distributions from Bayesian Inference

\[N_{e\alpha} = 0.0827 \]

\[N_{f\alpha} = 1 \]

\[\mu_{sln} = \mu_{H_2O}(T) \exp \left(\frac{(aX_{MEA} + b)T + cX_{MEA} + d)(\alpha(eX_{MEA} + fT + g) + 1)X_{MEA}}{T^2} \right) \]
Density Model\(^1\)

- Three sources of data available for parameter calibration

\[\rho_{sln} = \frac{MW_{sln}}{X_{MEA}V_{MEA} + X_{H_2O}V_{H_2O} + X_{CO_2}V_{CO_2} + X_{MEA}X_{H_2O}V^* + X_{MEA}X_{CO_2}V^{**}} \]

- Modified molecular weight calculation

- Five uncertain parameters

 - \(V_{CO_2} = a \)

 - \(V^* = b + cX_{MEA} \)

 - \(V^{**} = d + eX_{MEA} \)

<table>
<thead>
<tr>
<th>Baseline Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>10.2074</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>-2.2642</td>
</tr>
<tr>
<td>(c)</td>
</tr>
<tr>
<td>3.0059</td>
</tr>
<tr>
<td>(d)</td>
</tr>
<tr>
<td>207</td>
</tr>
<tr>
<td>(e)</td>
</tr>
<tr>
<td>-563.3701</td>
</tr>
</tbody>
</table>

\(^1\) Weiland et al., Journal of Chemical & Engineering Data 1998, 43, 378-382
Density Model/Data Comparison

$r=0.3$

Data points from Jayaratna et al., Journal of Chemical & Engineering Data, 2013 58, 986-992
Surface Tension Model-Original Form\(^1\)

\[
\sigma_{\text{mix}} = \sigma_{\text{H}_2\text{O}} + \sum_{i=\text{CO}_2,\text{MEA}} \left(1 + \frac{b_i x_i}{(1-a_i)(1+\sum_{j=\text{CO}_2,\text{MEA}} a_j x_j)}\right) (x_i (\sigma_i - \sigma_{\text{H}_2\text{O}}))
\]

- Function of temperature and composition
- Parameters \(a_i\) and \(b_i\) regressed individually for data sets with a given value of MEA weight fraction
- Cannot be used to represent solvents over a range of temperature and composition

1. Jayarathna et al., Journal of Chemical & Engineering Data, 2013 58, 986-992
New Surface Tension Model

\[\sigma_{\text{mix}} = \sigma_{\text{mix}}(T, \alpha, r) \]

\[\sigma_{\text{mix}} = \sigma_{\text{H}_2\text{O}} + (\sigma_{\text{CO}_2} - \sigma_{\text{H}_2\text{O}})f(r, \alpha)X_{\text{CO}_2} + (\sigma_{\text{MEA}} - \sigma_{\text{H}_2\text{O}})g(r, \alpha)X_{\text{MEA}} \]

\[f(r, \alpha) = a + b\alpha + c\alpha^2 + dr + erf^2 \]

\[g(r, \alpha) = f + g\alpha + h\alpha^2 + ir + jr^2 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.4558</td>
<td>f</td>
<td>2.3122</td>
</tr>
<tr>
<td>b</td>
<td>-1.5311</td>
<td>g</td>
<td>4.5608</td>
</tr>
<tr>
<td>c</td>
<td>3.4994</td>
<td>h</td>
<td>-2.3924</td>
</tr>
<tr>
<td>d</td>
<td>-5.6398</td>
<td>i</td>
<td>5.3324</td>
</tr>
<tr>
<td>e</td>
<td>10.2109</td>
<td>j</td>
<td>-12.0494</td>
</tr>
</tbody>
</table>
Surface Tension Model/Data Comparison

$r=0.2$

Data points from Jayarathna et al., Journal of Chemical & Engineering Data, 2013 58, 986-992
Case Study: Application of Parametric Uncertainty to Absorber Model

• Considered stochastic absorber model (Phoenix model) for two cases
 – Prior distributions (±10% of deterministic value) for all parameters not eliminated by sensitivity matrix methodology
 – Posterior distributions of all parameters not eliminated by sensitivity matrix methodology or Bayesian inference output

• Key input variables for absorber simulation
 – Inlet lean solvent mass flowrate: 3000 kg/hr
 – L/G mass ratio: 4.42
 – Lean solvent concentration: 35.4 wt% MEA; 0.35 mol CO₂/mol MEA

• Effect of parametric uncertainty on percent CO₂ capture observed
Case Study Results

Prior Distribution Case

Posterior Distribution Case

Sample size is 200 simulations
Future Work

• Complete physical property models uncertainty quantification
 – e-NRTL thermodynamic framework: VLE, heat capacity, heat of absorption
 – Diffusivity

• Propagate all stochastic models (e.g. physical properties, kinetics, mass transfer and hydraulics) through process simulation

• Validation of overall stochastic model with process data
 – Steady state data from UT Austin pilot plant
 – Steady state and dynamic data from NCCC
Thank you!

Acknowledgements

As part of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000.

The authors would like to thank Prof. Gary T. Rochelle from The University of Texas at Austin for sharing the Phoenix model. The authors sincerely acknowledge valuable discussions with Prof. Rochelle and Brent Sherman from The University of Texas at Austin.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.