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MOTIVATION 

 Under the auspices of US DOE’s Carbon Capture 

Simulation Initiative (CCSI), we are developing 

computational models of various post-combustion CO2 

capture technologies 

 

 

 As part of this project, our current focus is on the 

development of dynamic models and control systems for 

solid-sorbent CO2 capture processes. 
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Optimized Process Developed using CCSI Toolset 
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Solid Sorbent 
MEA27 

(D10°C HX) 
MEA27 

(D5°C HX) 
Q_Rxn (GJ/tonne CO2) 1.82 1.48 1.48 

Q_Vap (GJ/tonne CO2) 0 0.61 0.74 

Q_Sen (GJ/tonne CO2) 0.97 1.35 0.68 

Total Q 2.79 3.44 2.90 

ADS-001A ADS-001B 

Diameter (m) 9.748 

Bed Depth (m) 7.232 4.854 

Total HX Area (m2) 1733.7 941.3 

RGN-001 

Diameter (m) 7.147 

Height (m) 4.592 

Total HX Area (m2) 1573.1 

Solid Sorbent: 

NETL 32D, 

a mesoporous  

amine-impregnated 

silica substrate 



MOVING BED DYNAMIC MODEL DEVELOPMENT 

 1-D two-phase pressure-driven non-isothermal dynamic 

model of a moving bed reactor as part of a solid-

sorbent CO2 capture process 

Model Assumptions 
 Vertical shell & tube type reactor 

 Gas and solids flows are modeled by plug flow 

model with axial dispersion. 

 Particles are uniformly dispersed through the 

reactor with constant voidage 

 Particle attrition ignored 

  Temperature is uniform within the particles 

 

Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out

• Gaseous species : CO2, N2, H2O 

• Solid phase components: bicarbonate,  

     carbamate, and physisorbed water. 
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MODEL DEVELOPMENT 

• Radial variation neglected 

• Perforated trays are used to distribute the solids 

uniformly 

• Stripping steam is used  

• The solids enter the bed from a preheater at about 95oC 
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CONSERVATION EQUATIONS 

  

Effective Axial Dispersion Coefficient* 

  

Solid Phase 

Gas Phase 
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*Ruthven, D. M. Principles of adsorption and adsorption processes; Wiley-Interscience, 1984 



CONSERVATION EQUATIONS CONTD. 

Energy Balance 

Gas Phase 

 

Solid Phase 

 

Tube wall 
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Immersed Heat Exchanger Model 

 

 

 

Heat Transfer Coefficient calculated by modified Packet Renewal theory1 
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1Baskakov, et al., Heat Transfer to Objects Immersed in Fluidized Beds. Powder Technology, 1973. 8, pg. 273-282. 
2Mickley and Fairbanks., Heat Transfer to Objects Immersed in Fluidized Beds. Powder Technology, 1973. 8, pg. 273-282. 
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Pressure drop 

 

Modified Ergun Equation is used by using the slip velocity between the interstitial 

fluid velocity and particle velocity instead of the superficial velocity  
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HYDRODYNAMIC MODEL 

Maximum Gas Velocity for Maintaining the Bed in the Moving Bed Regime* 

 

External mass transfer resistance is considered by using Frössling correlation 

 

Constraint 
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* Chehbouni, et al., The Canadian Journal of Chemical Engineering 1995, 73, 41–50. 
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REACTION KINETICS 

𝐻2𝑂 𝑔 ↔ 𝐻2𝑂 𝑝ℎ𝑦𝑠   

2𝑅2𝑁𝐻 + 𝐶𝑂2,(𝑔) ↔ 𝑅2𝑁𝐻2
+ + 2𝑅2𝑁𝐶𝑂2

− 

𝑅2𝑁𝐻 + 𝐶𝑂2,(𝑔) + 𝐻2𝑂 𝑝ℎ𝑦𝑠 ↔ 𝑅2𝑁𝐻2
+ + 𝐻𝐶𝑂3

− 

  

12 

*Lee et al. A model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water, 28th 

International Pittsburgh Coal Conference 2011, Pittsburgh, PA, USA. 
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REACTION KINETICS 

*Lee et al. A model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water, 28th 

International Pittsburgh Coal Conference 2011, Pittsburgh, PA, USA. 

 

 

 

 

 

-52,100 -78.5 

-36,300 -88.1 

-64,700 -174.6 

28,200 0.0559 

58,200 2.6167 

57,700 0.0989 

1.17 

13 

H2O 

Bic 

Bic 

Car 

Car 

m 

H2O 



Modeling of Balance of the Unit  

Pressure flow-network developed along with the control valves 
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Variable Base Value Units 

Reactor Diameter 9 m 

Reactor Height 7 m 

Average voidage 0.6 

Steam inlet flow rate 1000 kmol/hr 

HX steam flow rate 2983.09 kmol/hr 

Diameter of HX tube 0.015 m 

Solids inlet flow rate 550000 Kg/hr 

Solids inlet temperature 52.32 oC 

Initial loading of bicarbonate 0.263 mol/kg sorbent 

Initial loading of carbamate 1.797 mol/kg sorbent 

Initial loading of water 0.651 mol/kg sorbent 

Regenerator Parameters and Operating Conditions 
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SOLUTION METHODOLOGY 

 All the equations are written and solved in 

Aspen Custom Modeler 

 

 The dynamic model is solved using the 

Method of Lines 
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Moving Bed Regenerator: Results 
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Transient Response of Key Regenerator Variables Due to 10% Step  

Increase in Sorbent Flowrate (open- loop) 
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Sorbent flowrate increased by 10%, only outlet temperature controlled W
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Comparison of Initial Steady State Conditions to the Steady  

State Conditions After 10% Step Increase in Sorbent Flowrate  

21 

Bicarbamate 
(mol/kg solid) 

Carbamate 
(mol/kg solid) 

Physiosorbed 
Water 

(mol/kg solid) 

Initial 0.311 0.891 0.837 

Only Outlet 
Temperature 

Control 

0.322 0.923 0.836 

Both Outlet 
Temperature 

and Ratio 
Controlled 

0.313 0.895 0.842 
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CONCLUSIONS 
1. A one-dimensional, non-isothermal, pressure-driven dynamic 

model of a moving bed reactor mainly to be used as the 

regenerator has been developed in ACM.  

 

2. The model has been developed in analogy to fixed bed and  

     fluidized bed reactors.  

 

3. When both the outlet temperature and the ratio of the 

stripping steam flowrate to the solids flowrate are controlled, 

the reactor is found to reject disturbances satisfactorily. 
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Thank you 
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