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MOTIVATION 

 Under the auspices of US DOE’s Carbon Capture 

Simulation Initiative (CCSI), we are developing 

computational models of various post-combustion CO2 

capture technologies 

 

 

 As part of this project, our current focus is on the 

development of dynamic models and control systems for 

solid-sorbent CO2 capture and compression system. 
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Optimized Process Developed using CCSI Toolset 
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Solid Sorbent 
MEA27 

(D10°C HX) 
MEA27 

(D5°C HX) 
Q_Rxn (GJ/tonne CO2) 1.82 1.48 1.48 

Q_Vap (GJ/tonne CO2) 0 0.61 0.74 

Q_Sen (GJ/tonne CO2) 0.97 1.35 0.68 

Total Q 2.79 3.44 2.90 

ADS-001A ADS-001B 

Diameter (m) 9.748 

Bed Depth (m) 7.232 4.854 

Total HX Area (m2) 1733.7 941.3 

RGN-001 

Diameter (m) 7.147 

Height (m) 4.592 

Total HX Area (m2) 1573.1 

Solid Sorbent: 

NETL 32D, 

a mesoporous  

amine-impregnated 

silica substrate 



Modeling Domain 
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Bubbling Fluidized Bed Model 

Development 
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• 1-D two-phase pressure-driven non-isothermal dynamic model of a solid-

sorbent CO2 capture in a two-stage bubbling fluidized bed reactor system. 

• Models are flexible such that it can be used as an adsorber or regenerator 

• Embedded cooler/heater depending on the application 

• Flexible configuration- solids can enter/leave at/from the top or bottom 

• A 2-stage adsorption model with customized variables for uncertainty 

quantification capabilities has been developed 

 



DYNAMIC MODEL – BUBBLING 

FLUIDIZED BED 

Model Assumptions 
1. Each BFB consists of bubble, emulsion and 

cloud-wake regions. 

2. Bubble region is free of solids. 

3. Constant average particle properties 

throughout the bed 

4. Adsorption-reaction takes place in solid-phase. 

5. Solids leave at the top of the bed (Overflow-

type configuration). 

6. Transients of the immersed heat exchangers 

are neglected 

*Lee, A.; Miller, D. A 1-D Three Region Model for a Bubbling Fluidized Bed Adsorber. Ind. Eng. Chem. Res. , 52, 469-484, 2013 

* Modekurti, S.; Bhattacharyya, D., Zitney, S. E., Dynamic modeling and control studies of a two-stage bubbling fluidized bed 

adsorber-reactor for solid sorbent CO2 capture, Ind. Eng. Chem. Res. , 52, 10250-120260, 2013 
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MODEL DEVELOPMENT 

• Gaseous species : CO2, N2, H2O 

• Solid phase components: bicarbonate, carbamate, and 

physisorbed water. 

• Transient species conservation and energy balance 

equations for both gas and solid phases in all three 

regions. 
*Lee, A.; Miller, D. A 1-D Three Region Model for a Bubbling Fluidized Bed Adsorber. Submitted to Ind. Eng. Chem. Res. 2012 
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CONSERVATION EQUATIONS 
Bubble Region : 

Cloud-wake Region : 

Gaseous Components 

Gaseous Components 
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CONSERVATION EQUATIONS 
Cloud Wake Region : 

Adsorbed Species 
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Emulsion Region : 

CONSERVATION EQUATIONS CONTD. 

Gaseous Components 

11 



Emulsion Region : 

CONSERVATION EQUATIONS CONTD. 

Adsorbed Species 
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HYDRODYNAMIC MODEL 

Mori and 

Wen (1975) 

Sit and Grace (1981) 
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REACTION KINETICS 

𝐻2𝑂 𝑔 ↔ 𝐻2𝑂 𝑝ℎ𝑦𝑠   

2𝑅2𝑁𝐻 + 𝐶𝑂2,(𝑔) ↔ 𝑅2𝑁𝐻2
+ + 2𝑅2𝑁𝐶𝑂2

− 

𝑅2𝑁𝐻 + 𝐶𝑂2,(𝑔) + 𝐻2𝑂 𝑝ℎ𝑦𝑠 ↔ 𝑅2𝑁𝐻2
+ + 𝐻𝐶𝑂3
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*Lee et al. A model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water, 28th 

International Pittsburgh Coal Conference 2011, Pittsburgh, PA, USA. 



Dynamic Model–Moving Bed Reactor 

 1-D two-phase pressure-driven non-isothermal dynamic 

model of a moving bed reactor mainly for the 

regenerator application 

Model Assumptions 
 Vertical shell & tube type reactor 

 Gas and solids flows are modeled by plug flow 

model with axial dispersion. 

 Particles are uniformly dispersed through the 

reactor with constant voidage 

 Particle attrition ignored 

  Temperature is uniform within the particles 

 

Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out

• Gaseous species : CO2, N2, H2O 

• Solid phase components: bicarbonate,  

     carbamate, and physisorbed water. 
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 Integrated pre and post-heat exchangers are considered for  

    heat  recovery 

 

 Gas and solids flows are modeled by plug flow model  

     with axial dispersion 

 

 For pressure drop calculation, a modified Ergun equation by using 

    the slip velocity between the solids and gas is used instead of the superficial fluid 

     velocity 

 

 Energy balance equations consider heat transfer between solid  

     and gas and tube wall and the mixed phase 

 

 Heat transfer coefficient between the mixed phase and the tube  

    wall is calculated by a modified packet-renewal theory 

 

 Bed hydrodynamics are described by analogy to fixed bed and 

    fluidized bed systems 

 

 Reaction kinetics are similar to the bubbling bed model 
 

Development of Moving Bed Model 

16 



Pneumatic Transport Modeling 

   Assumptions 

• Isothermal 

• Ideal separation of gases and solids. Therefore, transport gas is free of solids after 

separation. 

• No mass transfer and reactions during the transport 

  Options considered for the transport medium 

• Unclean flue gas from the  adsorber inlet 

• Clean flue gas from the adsorber outlet 

• A recycling transport medium with makeup from the clean gas 

• CO2 from the outlet of the regenerator    

 Calculation of the overall pressure drop in the vertical pipe 

• Pressure drop due to gas acceleration 

• Pressure drop due to solids acceleration 

• Pressure drop due to gas to pipe friction 

• Pressure drop due to solids to pipe friction 

• Pressure drop due to static head of the solids 
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Pneumatic Transport Modeling: Regenerator to Adsorber 

P ip e

B 1

Fe e d _ H o p p e r
B 3

Co m p re sso r

Co o le r

S o lid s_ In

S 2

S 1

S 3

S 5

S 6

S 4

S 1 3

S 1 4

S 1 5

Solids from the 
regenerator 

Solids to the 
adsorber 

ΔP (bar) 0.56 

Pipe Dia (m) 0.3 

Pipe Length (m) 25 

Load Ratio (S/G) 40 

Choking Velocity (m/s) 20.1 

Superficial Velocity (m/s) 24.2 
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Solids from the 
adsorber 

Solids to the 
regenerator 

Pneumatic Transport Modeling: Adsorber to Regenerator 

ΔP (bar) 0.18 

Pipe Dia (m) 0.45 

Pipe Length (m) 15 

Load Ratio (S/G) 28.3 

Choking Velocity (m/s) 19.1 

Superficial Velocity (m/s) 22.9 
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 Dynamic model of a multi-stage integral gear compressor  system with inter-stage 

   coolers, knock-out drums,  and TEG absorption system has been developed. 

 

  Performance curves obtained from a commercial vendor has been used for 

    calculating off-design performance.   

CO2 Compression System Model 

20 
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CO2 Compressor Load Control 

Surge Detection and Control 
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Gain Scheduling Controller 
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IGV Model 



Modeling of Balance of the Plant  

1. Pressure flow-network along with the control 

valves 

 

2. Gas and Solid distributors 

 

3. Downcomer and Exit-hopper 

 

4. Other components such as flue-gas stack etc.  

 

5. Pre-heater, post-heat exchanger, post-cooler, 

steam and BFW system for heat recovery 
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SOLUTION METHODOLOGY 

 All models are set up in Aspen Custom 

Modeler 

 

 The dynamic model is solved by using the 

Method of Lines 

 

 ACM model is embedded in Simulink for 

LMPC implementation. 
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Bubbling Bed Model : Results from Single Stage 
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Moving Bed Regenerator: Results 
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•  PID controller for controlling CO2 capture by manipulating the 

solid sorbent flowrate. 

• Note the large undershoot and long settling time. 

Configuration and Performance of the PID Controller 

CONTROLLER DESIGNS FOR MAINTINING 

CO2 CAPTURE – ADSORBER-ONLY (20% step 

increase in flue gas flowrate) 
1. PID CONTROLLER 
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• Data for the process and disturbance models are generated by 

implementing step changes in the sorbent flowrate and the flue gas 

flowrate, respectively. 

 

• Process and disturbance models are identified in MATLAB as first-order 

and pure-gain-plus-second–order models, respectively. 

CONTROLLER DESIGN CONTD. 
2.FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER 

Comparison of the process model 

to the data from ACM® 
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• Note the smaller/shorter undershoot with large overshoot and 

settling time 

Configuration and Performance of the Feedback-Augmented 

Feedforward Controller 

CONTROLLER DESIGN CONTD. 
2.FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER 
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Estimated using ARX on data set t  

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)           

A(q) = 1 - 1.473 q^-1 + 0.2636 q^-2 + 0.2923 q^-3 - 0.08314 q^-4                                                       

B1(q) = -0.03877 q^-1 + 0.1641 q^-2 + 0.05974 q^-3 - 0.1471 q^-4 

B2(q) = -4.348 q^-1 + 0.03616 q^-2 - 21.36 q^-3 + 20.11 q^-4                                                                    

ARX model as the disturbance model 

CONTROLLER DESIGN CONTD. 
3.LINEAR MODEL PREDICTIVE CONTROLLER 
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Simulink block diagram for LMPC implementation 
31 



 Manipulated variable is sorbent 

flowrate. 

 ACM model is embedded in 

SIMULINK for MPC 

implementation.  

 20% step increase in flue gas 

flowrate as disturbance. 

Configuration of LMPC with  

Additional Integrator  

CONTROLLER DESIGN CONTD. 
3.1 Offset-free LMPC Using an Integrator 
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 Estimation of unmeasured disturbance 

using advanced Controllers of MPC 

toolbox in MATLAB ®. 

 The ACM model is embedded in 

SIMULINK for MPC implementation.  

 20% step increase in flue gas flowrate. 

 Performance is satisfactory even for 

other disturbances. 

Configuration and performance 

of LMPC with  

estimation of unmeasured 

 disturbance   

CONTROLLER DESIGN CONTD. 
3.2 Offset-free LMPC Using Unmeasured Disturbance 
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CONTROLLER PERFORMANCE COMPARISON 

Control performances of 

LMPC-I and LMPC-II are 

superior to others 

 

Control Performance Table 

 

CONTROLLER IAE ISE ITAE 

  (hr) (hr) (hr2) 

(1) PID 0.8111 1.7551 1.12E-04 

(2) FBAUGFF 0.4751 0.5502 6.60E-05 

(3) LMPC-I 0.3913 0.6138 5.57E-05 

(4) LMPC-II 0.4007 0.6386 6.30E-05 
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Control Configuration of the Regenerator System 
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Schematic of the ACM flow sheet of the moving bed regenerator with 
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Integrated Adsorber-Regenerator Dynamic 

Model: PID Controller 
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Integrated Adsorber-Regenerator Dynamic 

Model: PID Controller 
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Pressure Dynamics in CO2 Compression System: 10% 

Ramp Change in flowrate 
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Power Dynamics in CO2 Compression System: 10% Ramp 

Change in flowrate 



CONCLUSIONS 
1. One-dimensional, non-isothermal, pressure-driven dynamic 

models of a two-stage BFB adsorber-reactor, a moving bed 

regenerator, an integral gear CO2 compression system along 

with the balance of the plant has been developed in ACM for 

solid-sorbent CO2 capture.  

 

2. For adsorber-only case, the performances of both LMPC 

strategies are satisfactory and superior to other control 

strategies. 

 

3. The response of the coupled adsorber-regenerator system is 

slow and oscillatory due to interactions between the systems. 

     Advanced control strategies should be considered for 

satisfying the overall CO2 capture target over a period of 

time. 
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Pneumatic Transport Modeling 

Terminal Velocity of the particles: 

Choking Velocity, Voidage at Choking, and Superficial Velocity 
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Pneumatic Transport Modeling 

Load Ratio, Gas and Solid Velocities 

Reynold’s Number and Gas Friction Factor 
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