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MOTIVATION 
  To meet the environmental regulations for CO2 

emissions, it is required that power plants have to 
satisfy certain amount of CO2 capture over a period 
of time. 
 

 Under Carbon Capture Simulation Initiative (CCSI), 
the US DOE is working on various post-combustion 
CO2 capture technologies, e.g. solid-sorbent based 
CO2 capture. 
 

 As part of this project, our current focus is on the 
development of dynamic models and control 
systems for solid-sorbent CO2 capture. 
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DYNAMIC MODEL DEVELOPMENT 
• 1-D two-phase pressure-driven non-isothermal 

dynamic model of a solid-sorbent CO2 capture in a 
two-stage bubbling fluidized bed reactor system. 

 Model Assumptions 
1. Each BFB consists of bubble, emulsion and 

cloud-wake regions. 
2. Bubble region is free of solids. 
3. Constant average particle properties 

throughout the bed 
4. Adsorption-reaction takes place in solid-

phase. 
5. Solids leave at the top of the bed (Overflow-

type configuration). 
6. No accumulation in the embedded heat 

exchangers in the bed. 

*Lee, A.; Miller, D. A 1-D Three Region Model for a Bubbling Fluidized Bed Adsorber. Submitted to Ind. Eng. Chem. Res. 2012 
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MODEL DEVELOPMENT 

• Gaseous species : CO2, N2, H2O 
• Solid phase components: bicarbonate, carbamate, and 

physisorbed water. 
• Transient species conservation and energy balance 

equations for both gas and solid phases in all three 
regions. 

*Lee, A.; Miller, D. A 1-D Three Region Model for a Bubbling Fluidized Bed Adsorber. Submitted to Ind. Eng. Chem. Res. 2012 
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CONSERVATION EQUATIONS 

Cloud-wake Region : 

Adsorbed Species 

Gaseous Components 

Gaseous Components 

Bubble Region : 
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CONSERVATION EQUATIONS CONTD. 
Emulsion Region : 

Gaseous Components 

Adsorbed Species 
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HYDRODYNAMIC MODEL 
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REACTION KINETICS 
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Modeling of balance of the Plant 
1. Pressure flow-network along with the control valves 

 
 

2. Gas and Solid distributors 
 

 
3. Downcomer and Exit-hopper 

 
4. Other components such as flue-gas stack etc.  

ΔPd = (0.2-0.3) ΔPbed  
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SOLUTION METHODOLOGY 

 Integration of sub-models with the adsorber-reactor 
model in ACM. 

 
 Setting up initial and boundary conditions. 

 
 ACM model is embedded in Simulink for LMPC 

implementation. 
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TRANSIENT STUDIES 

Transient in CO2 capture due to a 20% 
step increase in the flue gas flowrate 
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CONTROLLER DESIGNS  
1. PID CONTROLLER 
• Process models and the controllers are the same as open-loop 

case. 
• An additional PID controller for controlling CO2 capture by 

manipulating the solid sorbent flowrate. 
• Note the large undershoot and long settling time. 
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CONTROLLER DESIGN CONTD. 

2.FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER 
• Data for the process and disturbance models are generated by implementing 

step changes in the sorbent flowrate and the flue gas flowrate, respectively. 
• Process and disturbance models are identified in MATLAB as first-order and 

pure-gain-plus-second–order models, respectively. 

 

Comparison of the process model 
to the data from ACM® 
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CONTROLLER DESIGN CONTD. 
FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER 
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• Note the smaller/shorter undershoot with large overshoot and 
settling time 
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CONTROLLER DESIGN CONTD. 
3. Linear Model Predictive Controller (LMPC) 
• Identification of a multiple-input-single-output (MISO) auto-regressive with 

exogenous inputs (ARX) model using MATLAB®  
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ARX model for the process using MATLAB® System identification tool box 

Estimated using ARX on data set t  

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)            

A(q) = 1 - 1.408 q^-1 - 0.1453 q^-2 + 0.5946 q^-3 - 0.04143 q^-4                                                                

B(q) = -0.07178 q^-1 - 0.01151 q^-2 + 0.01254 q^-3 + 0.07076 q^-4 
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CONTROLLER DESIGN CONTD. 
Linear Model Predictive controller (LMPC) 
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Estimated using ARX on data set t  

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)           

A(q) = 1 - 1.473 q^-1 + 0.2636 q^-2 + 0.2923 q^-3 - 0.08314 q^-4                                                      

B1(q) = -0.03877 q^-1 + 0.1641 q^-2 + 0.05974 q^-3 - 0.1471 q^-4 

B2(q) = -4.348 q^-1 + 0.03616 q^-2 - 21.36 q^-3 + 20.11 q^-4     

                                                                 

ARX model for the disturbance rejection using MATLAB® System identification tool box 
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CONTROLLER DESIGN CONTD. 

Linear Model Predictive controller (LMPC) 
Servo Problem 
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CONTROLLER DESIGN CONTD. 
3.1. Offset-free LMPC Using an Integrator (LMPC-I) 
  Manipulating variable is sorbent 

flowrate. 
 ACM model is embedded in 

SIMULINK for MPC 
implementation.  

 20% step increase in flue gas 
flowrate as disturbance. 

Configuration of LPC with  
Additional Integrator  
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CONTROLLER DESIGN CONTD. 
3. 2. Offset-free LMPC Using Estimation of Unmeasured 
Disturbance (LMPC-II)   
  Estimation of unmeasured disturbance 

using advanced Controllers of MPC 
toolbox in MATLAB ®. 

 The ACM model is embedded in 
SIMULINK for MPC implementation.  

 20% step increase in flue gas flowrate. 
 Performance is satisfactory even for 

other disturbances. 

Configuration and performance of 
LMPC with  

estimation of unmeasured 
 disturbance   
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CONTROLLER PERFORMANCE 
COMPARISON 

Control performances of LMPC-I and LMPC-II 
are superior to others 
 

Control Performance Table 
 

CONTROLLER IAE ISE ITAE 

  (hr) (hr) (hr2) 

(1) PID 0.8111 1.7551 1.12E-04 

(2) FBAUGFF 0.4751 0.5502 6.60E-05 

(3) LMPC-I 0.3913 0.6138 5.57E-05 

(4) LMPC-II 0.4007 0.6386 6.30E-05 
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CONCLUSIONS 

1. A one-dimensional, non-isothermal, pressure-driven dynamic 
model of a two-stage BFB adsorber-reactor has been 
developed for solid-sorbent CO2 capture in ACM.  
 

2. The dynamics of CO2 capture have been studied for step 
changes in flue gas inlet flowrate, temperature and 
composition. 
 

3. Different control strategies have been considered for 
disturbance rejection. 
 

4. Among all the designs, the performances of both LMPC 
strategies are superior to others. 
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Thank you 
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