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For Accelerating Technology Development 

National Labs Academia Industry 

Rapidly synthesize 
optimized processes 
to identify promising 

concepts 

Better understand 
internal behavior  to 

reduce time for 
troubleshooting 

Quantify sources and 
effects of uncertainty to 

guide testing & reach 
larger scales faster 

Stabilize the cost 
during commercial 

deployment 
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•  Develop new computational tools and models to enable industry to 
more rapidly develop and deploy new advanced energy 
technologies 
–  Base development on industry needs/constraints 

•  Demonstrate the capabilities of the CCSI Toolset on non-
proprietary case studies 
–  Examples of how new capabilities improve ability to develop 

capture technology 

•  Deploy the CCSI Toolset to industry 
–  Initial licensees 

Goals & Objectives of CCSI 
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Framework for Optimization, Quantification of Uncertainty and Sensitivity 

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings of 
the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014. M. R. Eden, J. D. Siirola  and G. P. Towler Elsevier. 
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•  Discrete decisions:   How many units? Parallel trains?  
What technology used for each reactor? 

•  Continuous decisions: Unit geometries 
•  Operating conditions:  Vessel temperature and pressure, flow rates, 

    compositions 

Carbon Capture System Configuration 

Surrogate models for 
each reactor and 
technology used 
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•   Step 1: Define a large set of potential basis functions 

•  Step 2: Model reduction 

ALAMO: Model Development & Overfitting 

True error 
Empirical error 

Complexity 

E
rr

or
 

Ideal Model 

Overfitting Underfitting 



9 

•  We use an iterative design of experiments to 
–  Sample better or sample fewer data points 

•  Two models given the same data set size: 

Adaptive Sampling Improves Surrogate Model 

Even sampling Stronger 
sampling 
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Carbon Capture Reactors 
Regenerator	  Adsorber	  

Overflow	  
configura5on	  

Underflow	  
configura5on	  
Underflow	  
configura5on	  



11 

Superstructure Optimization 

Optimal layout  

Mixed-integer nonlinear 
programming model in GAMS 

•  Parameters 
•  Variables 
•  Equations 

•  Economic modules 
•  Process modules 

•  Material balances 
•  Hydrodynamic/Energy 

balances 
•  Reactor surrogate models 

•  Link between economic 
modules and process modules 

•  Binary variable constraints 
•  Bounds for variables 
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FOQUS Flowsheet 

Cost Estimating Excel Spreadsheet 
with Power Plant surrogate model 

ACM Model for BFB Solid Sorbent 
Capture System 
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FOQUS Problem Definition 

Decision Variables 

Objective 

Constraints 
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Objective Function:  Maximize Net efficiency 
Constraint:  CO2 removal ratio ≥ 90%  
                     Flowsheet evaluation (via process simulators) 
                     Minimum utility target (via heat integration tool) 
Decision Variables (17): Bed length, diameter, sorbent and steam feed rate 
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Optimization with Heat Integration 
w/o heat 

integration 
 

Sequential Simultaneous 

Net power efficiency (%) 31.0 32.7 35.7 
Net power output (MWe) 479.7 505.4 552.4 
Electricity consumption b  (MWe) 67.0 67.0 80.4 
IP steam withdrawn from power cycle (MWth) 0 0 0 
LP steam withdrawn from power cycle (MWth) 336.3 304.5 138.3 
Cooling water consumption b  (MWth) 886.8 429.3 445.1 
Heat addition to feed water  (MWth) 0 125.3 164.9 
Base case w/o CCS: 650 MWe, 42.1 % 
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Uncertainty Quantification for Prediction Confidence 
§ Now that we have 

•  A chemical kinetics model with quantified uncertainty 
•  A process model with other sources of uncertainty 
•  Surrogates with approximation errors 
•  An optimized process based on the above 

§ UQ questions 
•  How do these errors and uncertainties affect our prediction 

confidence (e.g. operating cost) for the optimized process? 
•  Can the optimized system maintain >= 90% CO2 capture in the 

presence of these uncertainties? 
•  Which sources of  uncertainty have the most impact on our prediction 

uncertainty? 
•  What additional experiments need to be performed to give acceptable 

uncertainty bounds? 

CCSI UQ framework is designed to answer these questions 
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Set up uncertain parameters 
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Generate simulation ensembles with FOQUS 
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Perform statistical analyses with FOQUS 
Ensemble Analyses 
Ø Uncertainty analysis 
Ø Sensitivity analysis 
Ø Correlation analysis 
Ø Scatterplots for visualization 
 
Response Surface (RS) Analyses 
Ø RS validation 
Ø RS visualization 
Ø RS-based uncertainty analysis 
Ø RS-based sensitivity analysis 
Ø RS-based Bayesian inference 

Ensemble UA 

RS-based UA 

RS-based SA 

RS 
validation 

RS visualization 

RS-based  
Bayesian inference 
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UQ in Solvent System Models 

Uncertainty in 
Properties Models 

Uncertainty in 
Hydraulic Models, 
Mass and Heat 
Transfer Models 

Uncertainty in 
Kinetic Models 

Process Simulation 
Uncertainty in % 
CO2 Capture  

Uncertainty in Energy 
Requirement 

Uncertainty in 
Estimation of Other 
Key Variables 

Morgan, J. C., D. Bhattacharyya, C. Tong and D. C. Miller (2015). "Uncertainty Quantification of Property Models: 
Methodology and Its Application to CO2-Loaded Aqueous MEA Solutions1." AIChE Journal. DOI: 10.1002/aic.14762 
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Framework for Optimization, Quantification of Uncertainty and Sensitivity 

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings of 
the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014. M. R. Eden, J. D. Siirola  and G. P. Towler Elsevier. 
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