

Advanced Computational Tools for Optimization and Quantification of Uncertainty

David C. Miller, Ph.D.

U.S. Department of Energy National Energy Technology Laboratory Pittsburgh, PA

5 September 2014

Acknowledgements

- Carnegie Mellon University
 - Nick Sahinidis, Alison Cozad, Zhihong Yuan
 - John Eslick
 - Ignacio Grossmann, Yang Chen
- LLNL
 - Brenda Ng, Charles Tong, Jeremy Ou, Jim Leek, Tom Epperly
- LBNL
 - Josh Boverhof, Deb Agarwal, You-Wei Cheah
- NETL
 - Andrew Lee, Juan Morinelly, Hosoo Kim
- West Virginia University
 - Debangsu Bhattacharyya, Srinivasarao Modekurti, Ben Omell
 - David Mebane

Outline

- DOE/FE Mission & Carbon Capture Challenge
- Carbon Capture Simulation Initiative
- Optimization & Quantification of Uncertainty
- Summary

Mission

- RD&D of cutting edge fossil energy technologies to ensure a secure, affordable, low-carbon energy future.
 - Collaborative partnerships with industry
 - International collaboration
- The Cross-cutting Research activity serves as a bridge between basic and applied research by fostering the development and deployment of innovative systems for improving efficiency and environmental performance.
 - Includes development of computation, simulation, and modeling tools focused on optimizing plant design and shortening developmental timelines.

Challenges associated with carbon capture

- Fossil energy generates:
 - 67% of the US electricity
 - 42% coal, 25% natural gas
 - 65% worldwide electricity

- Large-scale problem
 - 2 billion tons/year CO₂ emitted from coal by 2020 in US
 - Flue gas: 5 million lb/hr for 550MW PC plant (630 kg/s)
- No existing economical solution
 - Cost of capture plant
 - De-rate of power plant
- Need for system optimization to fully evaluate technology options

U.S. Energy Information Administration, Annual Energy Outlook 2013 Early Release Overview. Report Number: DOE/EIA-0383ER(2013), http://www.eia.gov/forecasts/aeo/er/pdf/0383er%282013%29.pdf (2013).

U.S. Energy Information Administration, International Energy Outlook 2011. Report Number: DOE/EIA-0484(2011), http://www.eia.gov/forecasts/ieo/pdf/0484%282011%29.pdf (2011).

Clean Coal Research Program Goals

Driving Down the COE and Cost of Coal Power CCS

Goals shown are for greenfield plants. Costs are for nth-of-a-kind plants, during first year of plant operation, and include compression to 2215 psia but exclude CO₂ transport and storage costs. Today's capture costs are relative to Today's SCPC without CO₂ capture. 2020 and 2030 capture costs are relative to an A-USC PC without CO₂ capture.

Development Challenges

- The traditional pathway from discovery to commercialization of energy technologies can be quite long, i.e., ~ 2-3 decades¹
- President's plan requires that barriers to the widespread, safe, and cost-effective deployment of CCS be overcome within 10 years²
- To help realize the President's objectives, new approaches are needed for taking CCS concepts from lab to power plant, <u>quickly</u>, and at low cost and risk
- Accelerate the development of CCS technology, from discovery through deployment, with the help of advanced computations tools and models

1. International Energy Agency Report: Experience Curves for Energy Technology Policy," 2000. 2. http://www.whitehouse.gov/the-press-office/presidentialmemorandum-a-comprehensive-federal-strategy-carbon-capture-and-storage

U.S. DEPARTMENT OF

Outline

- DOE/FE Mission & Carbon Capture Challenge
- Carbon Capture Simulation Initiative
- Optimization & Quantification of Uncertainty
- Summary

CCS For Accelerating Technology Development Carbon Capture Simulation Initiative

Rapidly synthesize optimized processes to identify promising concepts

Better understand internal behavior to reduce time for troubleshooting

Quantify sources and effects of uncertainty to guide testing & reach larger scales faster

Stabilize the cost during commercial deployment

Goals & Objectives of CCSI

- <u>Develop</u> new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies
 - Base development on industry needs/constraints
- <u>Demonstrate</u> the capabilities of the CCSI Toolset on nonproprietary case studies
 - Examples of how new capabilities improve ability to develop capture technology
- **Deploy** the CCSI Toolset to industry
 - Support initial industry users
 - Obtain feedback on features and capabilities
 - Arrange for long term commercial licensing

CCSI Timeline

- Organizational Meetings: March 2010 October 2010
- Technical work initiated: Feb. 1, 2011
- Preliminary Release of CCSI Toolset: September 2012
 - Initial licenses signed
- CCSI Year 3 starts Feb. 1, 2013
 - Began solvent modeling/demonstration component
- 2013 Toolset Release: October 31, 2013
 - Multiple tools and models released and being used by industry
- Future
 - 2014 Toolset Release: October 31, 2014 planned
 - Final release and workshop late 2015
 - Commercial licensing late 2015 or early 2016

Advanced Computational Tools to Accelerate Carbon Capture Technology Development

Carbon Capture (and other process) Simulation Grand Challenges

- Multiple Scales
 - Particle: individual adsorbent behavior, kinetics and transport
 - **Device**: fluid and heat flows within a sorbent bed
 - Process: integration of devices for a design of a complete sorbent system
- Integration across scales
 - Effective simplifications: Detailed tools too complex to integrate/optimize
- Verification/Validation/Uncertainty
 - Create confidence in predictions of models
- Decision support
 - Evaluate key process performance issues affecting choices of technology deployment/investment

Outline

- DOE/FE Mission & Carbon Capture Challenge
- Carbon Capture Simulation Initiative
- Optimization & Quantification of Uncertainty
- Summary

Tools to develop an optimized process using rigorous models

Process Models

yb (kmol/kmol)

Bubbling Fluidized Bed (BFB) Model

- 1-D, nonisothermal with heat exchange
- Unified steady-state and dynamic ٠
- Adsorber and Regenerator ٠
- Variable solids inlet and outlet location .
- Modular for multiple bed configurations .

Moving Bed (MB) Model

- 1-D, nonisothermal with heat exchange
- Unified steady-state and dynamic ٠
- Adsorber and Regenerator •
- Heat recovery system .

Compression System Model

- Integral-gear and inline compressors ٠
- Determines stage required stages, intercoolers ٠
- Based on impeller speed limitations .
- Estimates stage efficiency •
- CO₂ drying (TEG absorption system) ٠
- Off-design performance. .
- Includes surge control algorithm .

Oulet

Simplifying the balance between optimal decision-making and model fidelity through tailored simple surrogate models

A. Cozad, N. V. Sahinidis and D. C. Miller, 2014, "Learning surrogate models for simulation-based optimization." AIChE Journal 60(6): 2211-2227.

ALAMO: Model Development & Overfitting

Step 1: Define a large set of potential basis functions

ALAMO: Surrogate Model Development

Complexity or terms allowed in the model

Adaptive Sampling Improves Surrogate Model

- We use an iterative design of experiments to
 - Sample better or sample fewer data points
- Two models given the same data set size:

Constrained Regression Improves Surrogates

Response bounds

pressure, temperature, compositions

Alternative domains

CCSI Carbon Capture Simulation Initiative

Carbon Capture Reactors

Carbon Capture System Configuration

- How many units? Parallel trains? Discrete decisions: • What technology used for each reactor?
- Continuous decisions: Unit geometries
- Operating conditions: Vessel temperature and pressure, flow rates, • compositions

Framework for Optimization, Quantification of Uncertainty and Sensitivity

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings of the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014, M. R. Eden, J. D. Siirola and G. P. Towler Elsevier.

Sinter: Generic Connectivity for Simulations

- Links simulations to FOQUS/Turbine
- Support for
 - gPROMS
 - Aspen Plus
 - Aspen Custom Modeler
 - Excel
 - Costing
 - Generic connectivity (i.e., Thermoflex)
- Explicitly links to any input/output variables via GUI

 JSON structure

Turbine: Simulation Execution Management

- Works with Aspen, gPROMS, Excel
- Supports large number of simulation executions
 - Manages failed simulations
- Scalable
 - Amazon Cloud
 - Up to 500 parallel simulations tested
 - Over 100,000 simulations run
 - Cluster at NETL (coming online 2014)
 - Local desktop
- Challenge: Licensing of commercial simulation tools

FOQUS: DFO Example with Heat Integration

Objective Function: Maximize **Net efficiency**

Constraint: CO₂ removal ratio ≥ 90% Flowsheet evaluation (via process simulators) Minimum utility target (via heat integration tool)

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate

FOQUS Optimization Results

	Simultaneous	Sequential	w/o heat integration
Net power efficiency (%)	32.6	31.8	30.0
Net power output (MW _e)	504.3	491.5	463.9
CO ₂ removal ratio (%)	91.9	90.2	90.2
Electricity consumption (MW _e)	86.9	75.1	75.1
IP steam (kg/s)	0	0	0
LP steam (kg/s)	93.9	125.3	139.0
Cooling water consumption (m ³ /s)	12.8	10.4	20.7
Heat addition to feed water (MW _{th})	135.4	139.8	0

Base case w/o CCS: 650 MW $_{\rm e}$, 42.1 %

Uncertainty in Kinetic Parameters

UQ Sampling

💷 Si	mı	ulation E	insemb	le Setu	up					? 💌
Cho ©	Choose how to generate samples: Choose sampling scheme Load all samples from a single file							Warning: Only with non-unifo	"Monte Ca m input d	arlo" sampling scheme is compatible istributions (PDF).
	Dis	stributio	ons	Samp	pling sche	eme				
		Name	Тур	pe	Default	Min	Max	PDF	Param 1	Param 2
	1	x1	Variab	le 🔻	4	-10	10	Uniform 🔻		
	2	x2	Fixed	•	5	-10	10	Uniform 🔻		
	3	хЗ	Variab	le 🔻	4	-10	10	Uniform 🔻	Ĭ	
	4	x4	Variab	le 🔻	5	-10	10	Uniform 🔻	Ĩ	
	5	x5	Variab	le 🔻	4	-10	10	Uniform 🔻	Ĩ	
	6	хб	Variab	le 🔻	4	-10	10	Uniform 🔻	Ĭ	
								Uniform Normal		
	All Fixed							Triangle		All Variable
	Browse for Sample file							Beta		
								Exponential Weibull		
	Cancel							Sample	es D	one

Lawrence Livermore National Laboratory

.....

BERKELEY LAB

NÈTL

CS

Carbon Capture Simulation Initiative

8

Pacific Northwest

NATIONAL LABORATORY • Los Alamos NATIONAL LABORATORY EST. 1943

Probability distribution for the loading exiting the regeneration system

Required new steam flow to meet product specs

Data Management: Provenance

UQ Analysis

Optimization Runs

Superstructure Results Determine Structure

Algebraic Surrogate Models

Process Model

Kinetic Model

Experimental Data

Outline

- DOE/FE Mission & Carbon Capture Challenge
- Carbon Capture Simulation Initiative
- Optimization & Quantification of Uncertainty
- Summary

	CCSI Release 2013.10.2
Pasia Data Submadala	High viscosity solvent model
Basic Data Submodels	SorbentFit – Kinetic/diffusion basic data fitting tool with UQ
High Resolution Filtered	Attrition Model
Submodels	Cylinder Filtered Models with quantified uncertainty bounds
Validated bigh	1 MW Adsorber and Regenerator CFD Models (validated)
validated nign- fidality CED models	Large scale adsorber and regenerator CFD Models
& UO tools	Statistical Model Validation Tool for Quantifying Predictions
8 0 8 10013	REVEAL: Reduced Order Modeling Tools for CFD and ROM Integration Tools
	Bubbling Fluidized Bed Reactor Model
	Moving Bed Reactor Model
Process Models	Multi-stage Centrifugal Compressor Model
	Membrane CO ₂ Separation Model
	Reference Power Plant Model
	FOQUS – Optimization & Quantification of Uncertainty
Optimization and UQ	ALAMO – Surrogate models for optimization
Tools	Process Synthesis Superstructure
	Oxy-Combustion Process Optimization Model
Dynamics & Control	D-RM Builder
Diek Anelysie Teele	Technical Risk Model
RISK Analysis Tools	Financial Risk Model
Crosscutting Integration	SimSinter – Links simulation files to FOQUS/Turbine
Tools	Turbing Science Cotoway Dung hundrade of the yeards of simulations

Toolset Deployment

- (ge) Initial licensees: •
- Additional licensees: ullet

Others licenses in progress.... ExonMobil ۲

PHILLIPS

Carbon Capture Simulation Initiative: A Case Study in Multiscale Modeling and New Challenges

David C. Miller,^{1,*} Madhava Syamlal,² David S. Mebane,³ Curt Storlie,⁴ Debangsu Bhattacharyya,⁵ Nikolaos V. Sahinidis,⁶ Deb Agarwal,⁷ Charles Tong,⁸ Stephen E. Zitney,² Avik Sarkar,⁹ Xin Sun,⁹ Sankaran Sundaresan,¹⁰ Emily Ryan,¹¹ Dave Engel,⁹ and Crystal Dale⁴

Annual Review of Chemical and Biomolecular Engineering 5: 301-323.

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

