Advanced Computational Tools to Accelerate the Development of Next Generation Technologies

David C. Miller, Ph.D.
U.S. Department of Energy
National Energy Technology Laboratory
For Accelerating Technology Development

- Identify promising concepts
- Reduce the time for design & troubleshooting
- Quantify the technical risk, to enable reaching larger scales, earlier
- Stabilize the cost during commercial deployment

National Labs
- Berkeley Lab
- Pacific Northwest National Laboratory
- NETL
- Los Alamos National Laboratory
- Lawrence Livermore National Laboratory

Academia
- Carnegie Mellon University
- Princeton University
- West Virginia University
- Boston University
- University of Texas at Austin
- University of Utah

Industry
- Fluor
- ADA
- B&W
- GE
- EPRI
- Electric Power Research Institute
- Burns & McDonnell
- AEP
- American Electric Power
- Duke Energy
- URS
- Boeing
- Dupont
- WorleyParsons
- ExxonMobil
- Eastman
- Chevron
- Phillips 66

U.S. Department of Energy
Advanced Computational Tools to Accelerate Next Generation Technology Development

Risk Analysis (Technical Risk, Financial Risk) & Decision Making

- Validated High-Fidelity CFD & UQ
 - Uncertainty Quantification
- Process Design & Optimization
 - Uncertainty Quantification
- Advanced Process Control & Dynamics
 - Uncertainty Quantification

- High Resolution Filtered Sub-models
- Process Models
 - Uncertainty Quantification

- Basic Data Sub-models

Cross-Cutting Integration Tools
- Data Management, Remote Execution Gateway, GUI, Build & Test Environment, Release Management

CCSI Carbon Capture Simulation Initiative
Advanced Process Systems Engineering Approaches

Basic Data Models

Process Models

Algebraic Surrogate Models

Superstructure Optimization

Optimal Process

Simulation Gateway

Simulation-Based DFO Framework

Uncertainty Quantification with Bayesian Calibration

SORBENTFIT

alamo

GAMS

CCSI

Carbon Capture Simulation Initiative

U.S. DEPARTMENT OF ENERGY
CFD models to reduce time for troubleshooting

Heat-transfer-tube-scale hydrodynamics

\[f_{drag}^* = \beta^* \left(-v_s^* |v_s^*| \right) + \gamma^* \]
Dynamic Reduced Models & APC Framework
Risk analysis and decision making framework

Combine technical risk and financial risk factors into an integrated decision analysis framework that naturally handles propagation of uncertainties into a variety of decision metrics.
Deploys Initial Computational Toolset

- Released 21 Toolset components Sept. 2012
 - Reaction kinetics model of solid sorbents
 - CFD models of 1 MW adsorber & regenerator
 - Process models of solid-sorbent capture, membrane, and compression systems
 - New optimization tools (ALAMO, superstructure, framework)
 - Advanced dynamic & control models (adsorber, compression
 - New integration tools (REVEAL, Turbine, Sinter)
 - Uncertainty Quantification Framework
 - Financial Risk Tool
Thank you!

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.