Multi-Scale Modeling with Dynamic Discrepancy
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Multi-Scale Modeling in chemical process systems is an inherently
statistical problem. Models for the chemistry at the scale of a catalyst or
CO, sorbent are incorporated into process-level models.  Almost
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Bayesian calibration (Markov Chain Monte Carlo) is then employed
to find the distribution of B that fits bench-scale data. The uncertainty
contained in the distribution can then be propagated to the next scale.

What the network map shows is that, if we are only
interested in a subset of states in a chemical model, we
can usually find some dynamic system containing only
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Uncertainty Quantification and Model Reduction are
combined in a novel Bayesian approach called Dynamic
Discrepancy. Consider a dynamic system < — f(X; k, K‘,)

where x is a vector of state variables and k and k are kinetic and
equilibrium parameters, respectively. A causal relationship between two
states x; and x; is established when Takens has shown that

7= f(-er p. ... k. ) {the infinite timeseries of
i = filoo oz s ki ki) x. will contain all of the
= Tj — X information about the
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This suggests a method of reducing the timeseries of i

order of a reaction network, based on its
network topology. In the reaction network
below, (circles and letters are states and
dots are reactions or other interactions)
intermediate states B, C, F, G and E —
which propagate causality from the
ultimate reactants A and D to the ultimate
product H.
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with 3;the it Bernoulli polynomial. A Karhunen-Loéve decomposition then leads to:2 . .
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here the basis functions ¢ are deterministic and known, while coefficients 8 are independently distributed:
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Bk ~ N(0, A1 az) with A; the eigenvalue corresponding to the basis function ¢;.2

: The reduced dynamic system is then
Bkt ~ N(0, Am20is)  &; = fi(zi, x5 ksy Ky)

a stochastic “discrepancy” function o which is a Gaussian (green) from the
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where the covariance kernel ' may be decomposed as:? Time () Time (s)

K—-1 K The discrepancy model was then

AN 2 / Z Z I qf .| implemented in an Aspen-based model
L0, 0') = og + Z i1 (Vk, U) + o2 [0k, ], [, 91]) + of a bubbling fluidized bed adsorber.4
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thus broken down in terms of interactions among inputs: first-order, second-order, | process scale for a
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constructed from the reduced set of
- states and discrepancy functions as
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Above: application of the method to a real PEI-silica sorbent (measurement by James
Hoffman, NETL). Left: TGA data calibration. Right: process model upscaling.?
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