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3.2.2 Bayesian Nonparametric Regression

Of course, knowing that a dynamic system involving only reactants and products of interest in
the process may be built does not automatically solve the problem of finding that system. For
this task, DDRM employs a Bayesian approach to nonparametric regression. The dynamic
system pertaining to the reduced reaction network shown in Figure 2 consists of a single rate
expression. Written in mass-action form, this expression is
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The functions � are stochastic functions known as discrepancies. A discrepancy is a statistical
concept born of approaches to Bayesian calibration – it formally represents error in the form
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Multi-Scale Modeling in chemical process systems is an inherently 
statistical problem.  Models for the chemistry at the scale of a catalyst or 
CO2 sorbent are incorporated into process-level models.  Almost 
invariably, some information must be left out at the larger scale, leading 
to uncertainty.  Obtaining a good process-scale model means 
quantifying and minimizing that uncertainty. 
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Uncertainty Quantification and Model Reduction are 
combined in a novel Bayesian approach called Dynamic 
Discrepancy.  Consider a dynamic system 

where x is a vector of state variables and k and κ are kinetic and 
equilibrium parameters, respectively.  A causal relationship between two 
states xi and xj is established when 
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Takens has shown that 
the infinite timeseries of 
xi will contain all of the 
information about the 
timeseries of xj.1 This suggests a method of reducing the 

order of a reaction network, based on its 
network topology.  In the reaction network 
below, (circles and letters are states and 
dots are reactions or other interactions) 
intermediate states B, C, F, G and E – 
which propagate causality from the 
ultimate reactants A and D to the ultimate 
product H. 
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What the network map shows is that, if we are only 
interested in a subset of states in a chemical model, we 
can usually find some dynamic system containing only 
those states (with perhaps a few extras) that will provide 
the correct dynamic behavior. 

The reduced dynamic system will be found through 
Bayesian Nonparametric Regression.  We introduce 
a stochastic “discrepancy” function δ which is a Gaussian 
process:2 

G(x, ⇣) = 0 (21)
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where the covariance kernel Γ may be decomposed as:2 

with ϑ a functional input such as a reactant or temperature.  The covariance is 
thus broken down in terms of interactions among inputs: first-order, second-order, 
etc. The kernels are defined as:2 
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with    the i th Bernoulli polynomial.  A Karhunen-Loéve decomposition then leads to:2 
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here the basis functions φ are deterministic and known, while coefficients β are independently distributed: 

G(x, ⇣) = 0 (21)
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with λij the eigenvalue corresponding to the basis function φij.2 

The reduced dynamic system is then 
constructed from the reduced set of 
states and discrepancy functions as 
shown at left.3 

Bayesian calibration (Markov Chain Monte Carlo) is then employed 
to find the distribution of β that fits bench-scale data.  The uncertainty 
contained in the distribution can then be propagated to the next scale. 

Simulated TGA 
data generated for 
a hypothetical CO2 
sorbent, with draws 
(green) from the 
discrepancy model 
distribution.3 
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ẋi = fi(· · · , xj , · · · ; ki,i) (4)

) xj ! xi (5)

˙

x = f(x;k,) (6)
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The discrepancy model was then 
implemented in an Aspen-based model 
of a bubbling fluidized bed adsorber.4 

Uncertainty 
propagation to the 
process scale for a 
hypothetical CO2 
sorbent.  Model 
runs are in red; the 
“real” process 
behavior is the 
black curve. Units 
are Pa; time is 
convertible to bed 
depth.3 

Above: application of the method to a real PEI-silica sorbent (measurement by James 
Hoffman, NETL).  Left: TGA data calibration.  Right: process model upscaling.3 

Dynamic Discrepancy is a foundation for 
machine learning in process design and control.  
Quantification of uncertainty leads to methods that can 
minimize uncertainty. 
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ẋ2 = f2(x; k2,2) (2)

.

.

.

.

.

. (3)
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