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Multi-scale modeling is an inherently statistical problem.  
Simplifications used in multi-scale approaches 
introduce uncertainty; a rational goal of a multi-scale 
paradigm is the quantification and minimization of this 
uncertainty. 

The model-plus 
discrepancy reproduces 
TGA data to within 
observation error, with 
penalties for interpolation 
and extrapolation.1 

Simulated TGA data (top 
left), posterior distribution 
(above) and “process 
model” temperature 
profiles (left) for the 
hypothetical case.  Black 
lines and blue dots are 
“reality.” 

Ab initio calculations can be used to establish prior 
probability distributions for the physical model 
parameters θ.  These distributions capture uncertainty 
due to the approximation of the Schrödinger equation 
as well as approximations to the chemistry. 

In Bayesian statistics, model parameters are considered 
to be random variables, and even the functional form of 
a model can be associated with a probability 
distribution.  A Bayesian approach to model calibration 
is 

where Y is data, Z is a first-principles (or reduced-order) 
model, δ is model discrepancy (a stochastic function), and 
ε is observation error.  We want to find the set of model 
functions Z + δ that are consistent with the data. 

The prior (π) and a likelihood (L) for the data are combined using Bayes’ 
theorem, with the result a posterior distribution (Ω) of models suitable for 
upscaling. 

For an equilibrium 
process, it’s relatively 
easy to find an 
appropriate model 
discrepancy.  At left are 
two marginal 
distributions of a 
posterior generated by 
calibration of a simple 
equilibrium model of an 
amine-based CO2 
sorbent to experimental 
TGA data. 

Dynamic discrepancies 
are more difficult, but 
obviously crucial for the 
much more common case 
of chemical reactions not in 
equilibrium.  Here the best 
approach is to apply the 
discrepancy function to the 
rate of reaction: 

The stochastic differential equation becomes tractable 
if we use a special form for the discrepancy, called 
Bayesian smoothing spline analysis of variance.  This 
is a basis expansion of δ – the coefficients are random 
but the nonlinear basis functions φ are deterministic.2 

A theorem by Takens3 makes clear that we can use 
this method to produce reduced-order models for 
complex systems of reactions while still capturing the 
real model behavior. 
A hypothetical example appears below.  A two-step 
reaction sequence was modeled by a single-step 
reaction plus discrepancy. 
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