Bayesian Methods in Multi-Scale Modeling

David S. Mebane,1,3 K. Sham Bhat,2 Joel D. Kress,2 Daniel J. Fauth,3 McMahan L. Gray,3 Andrew Lee3 and David C. Miller3

1Department of Mechanical and Aerospace Engineering, West Virginia University; 2Los Alamos National Laboratory; 3National Energy Technology Laboratory

Abstract

Multi-scale modeling can be viewed as a statistical problem. When moving from one scale to the next, some approximations must usually be made. This results in the introduction of uncertainty. The most effective multi-scale methodologies will be those that can best quantify the uncertainty at each scale and then propagate that uncertainty to the higher scale.

One of the goals of the US-DOE’s Carbon Capture Simulation Initiative is the development of such methodologies and their application to the design and scale-up of innovative carbon capture systems. The poster contains a walk-through of the basic methodology, as applied to amine-based CO2 sorbents.

Bayesian Calibration

• Fitting models to data in a Bayesian framework becomes a means of uncertainty quantification.
• The parameters are no longer just point estimates; there is a probability distribution of possible model values.
• In Bayesian statistics, there is a prior distribution and a posterior distribution. The prior reflects our belief about the parameters before taking account of any data. The posterior reflects our belief in light of the data.
• The relationship between the prior and posterior is given by Bayes’ Theorem:

\[\pi(\theta|y) \propto L(y|\theta) \times \pi(\theta) \]

where \(\pi(\theta|y) \) is the posterior, \(L(y|\theta) \) is the likelihood, and \(\pi(\theta) \) is the prior.
• That is, the posterior distribution for the parameters given the data is proportional to the prior parameter distribution times the likelihood of observing the data. (We can use this proportionality to get the actual distribution using a Monte Carlo simulation.)
• What is / how do we get the likelihood? First, we build a statistical model for the data. This model looks like: \(Y = Z(\theta) + \delta(\xi) + \epsilon \)
• This model says that the data \((Y) \) is equal to a model prediction \((Z) \) plus a model form discrepancy \((\delta) \) plus observation error \((\epsilon) \).
• The model form discrepancy is a very important aspect of this approach. It is a stochastic function describing the difference between our model predictions and reality. It has its own parameters \((\xi) \), which get included in the posterior distribution.
• Because both \(\delta \) and \(\epsilon \) are stochastic, \(Y \) is also stochastic. This means given some particular \(Y \) (the actual data), and some sets of parameters \(\theta \) and \(\xi \) we can use to evaluate the model \(Z \) and the discrepancy \(\delta \), we can calculate the likelihood (or probability) of observing that \(Y \).
• All of this is called the Kennedy-O’Hagan approach to calibration.
• Where do the priors come from? Since the priors are what we know about the parameters before we take any data into account, it makes sense that they should somehow arise from first-principles considerations. Developing priors this way helps to ground our model – it keeps it a model of a physical process, and prevents it from becoming a fitting function for data.
• How does all of this help with scale-up? Making predictions about industrial scale-up is essentially extrapolation using a model that has (usually) been fit to experimental data at some smaller scale, like the bench scale. If we’re just fitting a model to data, then we can get into trouble when we extrapolate. But through the model discrepancy, the Bayesian approach quantifies how good our model is and how much we can trust our parameters. After fitting both model and discrepancy to data, it then uses both of them to make probabilistic, extrapolative predictions. The better the model, the more certain the predictions.

Calibration of a Very Simple Equilibrium Sorbent Model

\[2\text{R}_2\text{NH} + \text{CO}_2(g) \rightleftharpoons \text{R}_2\text{NCOOH} : \text{R}_2\text{NH} \quad \kappa = \frac{x^2}{(1 - 2x)^2} \exp \left(\frac{\Delta S}{R} \right) \exp \left(\frac{-\Delta H}{RT} \right) \]

Amine chemistry
Two TEPA molecules combine to adsorb a CO2 molecule through the formation of a bound associate.

Continuing Efforts

The next step is putting all of this to work in the context of a process model. Preliminary results have already been obtained, and efforts are underway to develop discrepancies that are germane to kinetic phenomena.

Parameter uncertainty

Contour plots show the bivariate posterior probability density for (top) DH-DS (bottom) DH-nv (left) uninformative (uniform) prior distributions and (right) informative priors derived using quantum chemistry.

• We do the analysis twice and get two sets of posteriors: once with quantum priors and once without. The comparison shows that the quantum priors lead to a lot less uncertainty in the posterior distribution.

Model uncertainty

Model discrepancy plotted as a function of input temperature for experiments at 1 atm CO2 (left) with and (right) without quantum priors. The discrepancy is larger for the case with quantum priors.

• The quantum priors work hand-in-hand with the discrepancy, helping us to determine what uncertainty goes where.

Predictions

Model-plus-discrepancy predictions (left) reproduce experimental data to within observational error. Model-only predictions do not.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any representation, guarantee, warranty, endorsement, or assumption of liability in connection with the report or any part thereof. Any use or disclosure of this information in violation of Federal law is prohibited. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.