
Abstract 
    Multi-scale modeling can be viewed as a statistical problem.  When 
moving from one scale to the next, some approximations must usually be 
made.  This results in the introduction of uncertainty.  The most effective 
multi-scale methodologies will be those that can best quantify the 
uncertainty at each scale and then propagate that uncertainty to the higher 
scale. 
    One of the goals of the US-DOE’s Carbon Capture Simulation 
Initiative is the development of such methodologies and their application 
to the design and scale-up of innovative carbon capture systems.  The 
poster contains a walk-through of the basic methodology, as applied to 
amine-based CO2 sorbents. 

Bayesian Calibration 
• Fitting models to data in a Bayesian framework becomes a means of 

uncertainty quantification. 
• The parameters are no longer just point estimates; there is a probability 

distribution of possible model values. 
• In Bayesian statistics, there is a prior distribution and a posterior 

distribution.  The prior reflects our belief about the parameters before 
taking account of any data.  The posterior reflects our belief in light of 
the data. 

• The relationship between the prior and posterior is given by Bayes’ 
Theorem: 

Parameter uncertainty   
Contour plots show the bivariate 
posterior probability density for 
(top) DH-DS (bottom) DH-nv 
(left) uninformative (uniform) 
prior distributions and (right) 
informative priors derived using 
quantum chemistry. 
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Amine chemistry 
Two TEPA molecules combine to 
adsorb a CO2 molecule through the 
formation of a bound associate. 
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Predictions   
Model-plus-discrepancy 
predictions (left) reproduce 
experimental data to within 
observation error.  Model-only 
predictions do not. 

• That is, the posterior distribution for the parameters given the data is 
proportional to the prior parameter distribution times the likelihood of 
observing the data.  (We can use this proportionality to get the actual 
distribution using a Monte Carlo simulation.) 

• What is / how do we get the likelihood?  First, we build a statistical 
model for the data.  This model looks like: 

• This model says that the data (Y) is equal to a model prediction (Z) plus a 
model form discrepancy (δ) plus observation error (ε). 

• The model form discrepancy is a very important aspect of this approach.  It is a 
stochastic function describing the difference between our model predictions and 
reality.  It has its own parameters (ξ), which get included in the posterior 
distribution. 

• Because both δ and ε are stochastic, Y is also stochastic.  This means given 
some particular Y (the actual data), and some sets of parameters θ and ξ we can 
use to evaluate the model Z and the discrepancy δ, we can calculate the 
likelihood (or probability) of observing that Y. 

• All of this is called the Kennedy-O’Hagan approach to calibration. 
• Where do the priors come from?  Since the priors are what we know about 

the parameters before we take any data into account, it makes sense that they 
should somehow arise from first-principles considerations.  Developing priors 
this way helps to ground our model – it keeps it a model of a physical process, 
and prevents it from becoming a fitting function for data. 

• How does all of this help with scale-up?  Making predictions about industrial 
scale-up is essentially extrapolation using a model that has (usually) been fit to 
experimental data at some smaller scale, like the bench scale.  If we’re just 
fitting a model to data, then we can get into trouble when we extrapolate.  But 
through the model discrepancy, the Bayesian approach quantifies how good our 
model is and how much we can trust our parameters.  After fitting both model 
and discrepancy to data, it then uses both of them to make probabilistic, 
extrapolative predictions.  The better the model, the more certain the 
predictions. 

• Quantum chemistry is used to estimate the enthalpy and entropy of adsorption.  
Since we can arrive at different answers depending on the methods we use and 
how we set up the problem, this leads to a distribution. 

• We do the analysis twice 
and get two sets of 
posteriors: once with 
quantum priors and once 
without.  The comparison 
shows that the quantum 
priors lead to a lot less 
uncertainty in the 
posterior distribution. 

Model uncertainty   
Model discrepancy plotted as a 
function of input temperature for 
experiments at 1 atm CO2 (left) 
with and (right) without quantum 
priors.  The discrepancy is larger 
for the case with quantum priors. 

• The quantum priors work 
hand-in-hand with the 
discrepancy, helping us to 
determine what 
uncertainty goes where. 

Continuing Efforts 
   The next step is putting all of this to work in the context of a process model.  
Preliminary results have already been obtained, and efforts are underway to 
develop discrepancies that are germane to kinetic phenomena.  
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