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Abstract 
 

Advanced energy systems demand powerful and systematic optimization strategies for analysis, high 
performance design and efficient operation. Such processes are modeled through a heterogeneous 
collection of device-scale and process scale models, which contain distributed and lumped parameter 
models of varying complexity. This work addresses the integration and optimization of advanced 
energy models through multi-scale optimization strategies. In particular, we consider the optimal 
design of advanced energy processes by merging device-scale (e.g., CFD) models with flowsheet 
simulation models through sophisticated model reduction strategies. Recent developments in 
surrogate-based optimization have led to a general decomposition framework with multiple scales and 
convergence guarantees to the overall multi-scale optimum. Here, we develop two trust region-based 
algorithms where gradients are not required from the original detailed model (ODM). These 
algorithms borrow from derivative-free optimization (DFO) methods for unconstrained optimization 
and we extend them to the constrained case, as well as to process flowsheet optimization with different 
scale models that allow only limited recourse to the ODM.  Both methods demonstrate multi-scale 
optimization of advanced energy processes. The resulting theoretical derivations and developed 
algorithms are interesting and justify our previous work, including methodologies of reduced model 
(RM) development and flowsheet optimization, with reduced models based on their CFD counterparts.  
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 1    Introduction 

 
With  few exceptions,  process  simulation  models  consist  of lumped  parameter descriptions 
with a number  of ideal assumptions (e.g., perfect mixing, plug flow, equilibrium  behavior  and 
shortcut models).  On the other hand, there  is a growing need for more detailed,  multi-scale 
process models,  particularly for process design and  optimization.  As an  example,  consider 
the  IGCC  process  flowsheet  in Figure  1 with  three  units:   the  gasifier,  temperature  swing 
adsorber  (TSA)  and  the  combustor, which cannot  be modeled accurately with  conventional 
process simulation  models.  The process model comprises lumped parameter (algebraic)  mod- 
els for heat  exchange  and  compression,  distributed, dynamic  (differential-algebraic) models 
for the TSA unit  and distributed, multi-phase (partial differential-algebraic) CFD models for 
the gasification  and combustion  units.  To provide the optimization capability for the overall 
process model, our strategy replaces  these  heterogeneous  (DAE,  PDAE)  models by reduced 
models (RMs)  consisting  of algebraic  equations,  and  applies  large-scale  equation-based 
optimization strategies.  In this  way we hope  to  capture the  phenomena  of multi-phase 
flow, particle  mechanics,  and dynamic  operation  within  the process optimization. 

 

 

 
Figure 1. IGCC Flowsheet with Carbon Capture 

 
In our previous technical report, we considered the construction of reduced models (RM) 

within the process flowsheet.  These RMs balance accuracy with computational cost.  We now 
develop and analyze an optimization framework with reduced models that leads to convergence 
to the optimum of the original system models.  A key question is whether this convergent 
optimization framework can be performed without frequent recourse to the original models.  We 
answer this question in the following sections.  In the next section we describe the DFO trust 
region algorithm for unconstrained optimization as developed in Conn et al. (2009). This 
algorithm and its associated convergence analysis form the basis for our multi-scale flowsheet 
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optimization strategy.  Section 3 then provides a general description of the RMs along with the 
fully linear property for optimization. We also formulate two flowsheet optimization problems, 
one with original detailed models (ODMs) and the second with RMs, and prove that if the 
fully linear property holds for the RMs, it holds for the entire RM-based flowsheet model as 
well.  This allows us to reformulate the flowsheet optimization problem as an inequality 
constrained problem only in the space of the independent variables.  Section 5 then develops a 
trust region algorithm for the reformulated problem based on the DFO algorithm described in 
Section 2.  Finally, Section 6 considers special cases of this algorithm that lead to greater 
efficiency of the RM-based strategy. In addition, several examples are presented that describe 
this approach. 

 
 
2    The Basic Trust Region Algorithm 

 
Consider the unconstrained optimization problem given by: 

 
)(min xf

x
                                                           (1) 

x 
 

and the corresponding  trust region problem  solved at xk based on a reduced  model: 
 

                                                                                                                                                               (2) 

Within the trust region ∆k it is essential that )(xf r approximates )(xf well.  To do this we 
define the fully linear property where: 
     2|)()(| ∆≤− f

r xfxf κ ,     ∆≤∇−∇ g
r xfxf κ|)()(||                                                  (3) 

The unconstrained trust region algorithm of Conn et al. (2008) can be summarized briefly as 
follows. 

 
Algorithm I 

1.  Choose constants 10 10 <≤≤ ηη  (with 01 >η  ), )1,0(∈γ , 1>incγ  tolerance  tε and 

0>µ . Choose an initial point 0x and 0max >∆ along with 0∆ and model )( 0 sxf r + . 
 

2.  At iteration k, if   then go to Step 3.   Else, if ||)(|| k
r

k xf∇>∆ µ or 
)( sxf k

r + is not fully linear for ks ∆∈ , then construct a new model )( sxf k
r + that is 

fully linear on a (possibly smaller)  trust region with )||,)(||min(: kk
r

k xf ∆∇=∆ µ . 
 

3.  Solve (approximately) the trust region problem (2) and compute  the  step sk   that pro- 
vides a fraction  of Cauchy  decrease 1 , i.e., 

                                    kk
rfcd

kk
r

k
r xfsxfxf ∆∇≥+− ||)(||

2
)()(

κ
  (4)                                                                                                                

4.  Assess the acceptability of the trial point; define 

                           
)()(

)()(

kk
r

k
r

kkk
k sxfxf

sxfxf
+−
+−

=ρ                                                                  (5) 

 

and consider the following conditions:   
 

• If 1ηρ ≥k  , set kkk sxx +=+1  and potentially increase trust region using    

),min( max1 ∆∆=∆ + kinck γ .  This is called a successful iteration. 
• If ),[ 10 ηηρ ∈k  and the model is fully linear, set kkk sxx +=+1

and decrease trust   
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region, kk ∆⋅=∆ + γ1 .This is called an acceptable iteration. 
• If 1ηρ <k   and the model is not fully linear, then set kk xx =+1 and apply model 

refinement to attempt to make )(xf r  fully linear on k∆ .  This is called a model 
improving iteration. 

• If 0ηρ <k  and the model is fully linear, then set kk xx =+1 and decrease trust region,

kk ∆⋅=∆ + γ1 . This is called an unsuccessful iteration. 
 

5.  Set k = k + 1 and go to step 2. 
 

Under the assumptions that )(xf is bounded below, that the fully linear property holds (or can be 
made to hold) at kx and that the Hessian has a bounded norm, Conn et al. (2008) proved that

0)(lim =∇∞→ kk xf . Algorithm I and its properties therefore lead to a powerful result:  convergence 

to a stationary point of )(xf  does not require direct evaluation of )(xf∇ . Instead, only  is 
needed. As seen above, convergence is enabled by requiring fully linear models as well as

. 
For multiscale flowsheet optimization with reduced models, we extend this unconstrained 
algorithm to include two important features.  First, in the next section we show that reduced 
flowsheet models with the fully linear  property, can be embedded  within  the flowsheet, and this 
leads to objective and constraint functions  for the overall flowsheet model that also share the 
fully linear property.  Second,  in Section  4, we extend  Algorithm  I to  deal with inequality 
constraints through  minimization of an 1l  penalty  function,  which is equivalent to the RM-based  
flowsheet optimization problem. 

3  Formulation for Integrated RM-based Process Optimization 
 

As seen in  the  flowsheet  in  Figure  1, we can  describe  the  ODMs  in  the  flowsheet  by  the 
following equations: 

                                           0),(ˆ,0),( ==− uwduwdy                                                (6)
where u is the vector of model inputs  from the rest of the process flowsheet (including decision 
variables for optimization), y is the vector of model outputs to the rest of the process flowsheet 
(including  response  variables  for optimization) and  w is the  vector  of internal  (dependent) 
variables  within  the ODM. Similarly we describe the RM by: 

                                        0),(ˆ,0),( ==− uwruwry rr                                                  (7)               
 

where rw  is the vector of internal  variables within the RM. We assume that both 0),(ˆ =uwr r  

and 0),(ˆ =uwd are  regular  systems  of equations  where the  implicit  function  theorem  can be 
applied to  eliminate  the  variables  rw    and  w and  rewrite  the  RM and  ODM as )(ury = and  

)(udy = ,  respectively.   Moreover, we assume that the following properties are satisfied: 
• The RM is constructed from an experimental design (with points in set K) and satisfies 

interpolation properties: )()( kk udury == , Kk ∈  . 

• The ODM and RM are at least twice differentiable and their first derivatives are 
Lipschitz continuous over the entire domain of u.        

 
1 In Conn et al.  (2008), a quadratic term was also introduced in (4).  Here we consider the more restrictive 

case where the Hessian term is ignored.   This does not affect the first order convergence proof in Conn et  al (2008). 
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• The fully linear property holds between  the ODM and RM, i.e.:         

                  2||)()(|| ∆≤− furud κ  ,                ∆≤∇−∇ gurud κ||)()(||                                          (8)                                            

The flowsheet optimization problem with embedded ODMs can be written as: 

          0)(,0),,(,0),,(..),,,(min =−=≤ udyyzucyzuhtsyzuφ                             (9) 

where z is the vector of additional flowsheeting variables  and the functions  for the scalar 
objective, inequality  constraints and additional equations  for the flowsheet, 

),,(),,,( yzuhyzuφ and ),,( yzuc , respectively,  are  assumed  to  be twice  differentiable.   
Similarly, the flowsheet optimization problem with embedded RMs can be written as: 

 

              0)(,0),,(,0),,(..),,,(min =−=≤ uryyzucyzuhtsyzuφ                              (10) 

For the development of the RM-based flowsheet optimization strategy, we need the flowsheet models 
for (9) and (10) to satisfy  the  fully linear  property as well.  To  show this  we partition the  variables  
(u, z, y) into  (x, v) where x and  v, respectively,  are the  independent and  dependent  variables  
with  respect  to  the  equality  constraints, 0),,( =yzuc .  From  the structure of the ODMs and 
RMs we see that y can also be classified as a dependent variable vector  and  eliminated  
directly,  while the vectors  u and  z  may  need  to  be partitioned into independent  and  
dependent  subvectors,  i.e., and ),( vv zu , respectively.  We also assume that the 
flowsheet equations 
                                                           

are regular  and  the  implicit  function  theorem  can be applied  to form:  )(xvv d= . Similarly, 
the equations with RMs can be written as 

                                                            .  

These equations are also regular and the implicit function theorem can be applied to form: 
)(xvv r= . 

 
Moreover, for the constraints in (9) and (10) we note that for a fixed value of x, vr  and vd will 
take different values, i.e., 

 
               0),()),(,,()),(,,,,( === ddddvxvxvx vxcvxdvxcuudzzuuc                                        (11) 
                0),()),(,,()),(,,,,( === rrrrvxvxvx vxcvxrvxcuurzzuuc                                           (12) 

 

Equating the two relations leads to: 

))],(,,()),(,,([
))],(,,()),(,,([)),(,,()),(,,(0

rrrr

ddrrddrr

vxdvxcvxrvxc
vxdvxcvxdvxcvxdvxcvxrvxc

−+
−+==

                (13) 

 
or, equivalently: 
 
                   )],(),([)],(),([),(),(0 rdrrddrdddrr vxcvxcvxcvxcvxcvxc −+−+==                 (14) 
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and substituting for the bracketed terms  leads to: 
 
                                      )),(),(()(0 rrydrv vxdvxrAvvA −+−=                                                 (15) 

From the mean value theorem,  

                              ττ dvxcA T
dvv ))(,(

1

0∫ ∇=  for  )()( drd vvvv −+= ττ  

                   ττ dyvxcA T
ryy ))(,,(

1

0∫ ∇=  for )),(),((),()( rrr vxdvxrvxdy −+= ττ  

From regularity of the equalities,  we know that Av   is square and nonsingular.  As a result we 
have: 

                                             )),(),(()()( 1
rryvdr vxdvxrAAvv −−=− −                                          (16) 

                                        2
22 ||),(),(|||||| ∆≤−≤−⇒ CvxdvxrCvv rrdr                                        (17) 

where the last inequality  follows from the fully linear property. 
For (9) and (10) we now consider the objective function and inequalities as follows: 

 
                                                     ),()),(,,,,( vxuudzzuu dvxvxvx φφ =  

                                                     ),()),(,,,,( vxuurzzuu rvxvxvx φφ =  

                                            ),()),(,,,,( vxhuudzzuuh dvxvxvx =  

                                            ),()),(,,,,( vxhuurzzuuh rvxvxvx =  
 

At points where the equalities are satisfied we define these functions as follows. For the ODM 
we have 0),( =dd vxc  and also: 

                                                    )(),( xfvx dd =φ  and )(),( xgvxh dd =  

and also for the RM we have 0),( =rr vxc  
                                                )(),( xfvx r

rr =φ and )(),( xgvxh r
rr =  

We now can write the following set of reduced gradients: 
 

                                                                            (18) 

                                                                            (19)

                                                                              (20) 

                                                                             (21) 
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where 
),(

),,(),(

vxdy

ddd

y
yvx

y
vx

=∂
∂

=
∂

∂ φφ
and

),(

),,(),(

vxry

rdr

y
yvx

y
vx

=∂
∂

=
∂

∂ φφ

Now from these reduced gradients, we have: 
 
 
 

                                  (22) 

                                                                 ∆≤∆+∆≤ 54
2

3 CCC                                                                (23)
 

where the last inequality  follows because  the  trust region ∆ is bounded  above.  Similarly, it 
is straightforward to show that: 

 
 

                                                 ∆≤− 6||),(),(|| C
dv

vxd
dv

vxd rrdd φφ
                                                  (24) 

                                                 ∆≤− 7||),(),(|| C
dx

vxdh
dx

vxdh rrdd                                                   (25) 

                                                 ∆≤− 8||),(),(|| C
dv

vxdh
dv

vxdh rrdd                                                   (26)

 

Finally,  because  we can eliminate  v along with  the  equality  constraints, 0),( =vxc , we can 
reformulate  (9) and (10) as the inequality  constrained problems: 
 

                                                        0)(..),(min ≤xgtsxf                                                             (27) 

and  
                                                      0)(..),(min ≤xgtsxf rr                                                           (28)

To demonstrate fully linear properties for the objective and constraint functions, we 
consider the following functions and reduced gradients: 

                                         

                            ))(,()( xvxxf ddφ=                                                                                           (29)

                            ))(,()( xvxxf rr
r φ=                                                                                          (30) 

                                                                                 (31) 

                                                                                  (32) 
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where 1)),()(,(),( −∇−∇= ddvddx
dd vxcvxc

dx
vxdv

and 1)),()(,(),( −∇−∇= rrvrrx
rr vxcvxc

dx
vxdv

. 

From these relations it is clear that: 
                                      
                                   ||),(),(||||)()(|| rrdd

r vxvxxfxf φφ −=−                                                    

                                                                2
99 |||| ∆≤−≤ CvvC rd                                                       (33) 

and 

                          ||),(),(||||)()(||
x

vx
x

vx
dx

xdf
dx

xdf rrdd
r

∂
∂

−
∂

∂
≤−

φφ                                                  

                                                                    

                                                           

                                                                ∆≤−+−≤ 1010 ||)||||(|| C
dx
dv

dx
dvvvC rd

rd                                  (34)

 
Following the same analysis for the inequality constraints it is straightforward to show that: 

                                                           2
11||)()(|| ∆≤− Cxgxg r                                                            (35) 

                                                           ∆≤− 12||)()(|| C
dx

xdg
dx

xdg r

                                                      (36) 
 

and fully linear properties  hold for the objective  and constraint functions  in (27) and (28). 
 
 
4    Extending Algorithm I to Inequality Constrained Problems 

 
We now develop the trust region algorithm based on (27) and (28).   To reformulate these 
problems we form a merit function that includes the objective function and constraint violations.  
For instance,  an exact  merit  function,  whose minimum  is equivalent to the solution  of (27), is 
the 1l   penalty  function,  along with its directional derivative  (along direction  p): 

                                   ∑
∈

+=
Jj

j xgvxfx )0),(max()()(~ψ                                                             (37) 

                                   ∑∑
+∈∈

∇+∇+∇=
Jj

T
j

Jj

T
j

T
p pxgvpxgvpxfxD )()0,)(max()()(~

0

ψ                 (38) 

where }0)(|{0 == xgjJ j , }0)(|{ >=+ xgjJ j and }0)(|{ <=− xgjJ j , 
0JJJJ ∪∪= −+ and 

the penalty  parameter 0>v  is assumed  to be bounded  above.  However, this 1l penalty 

function is nonsmooth because of the max operator, and this makes it difficult to fit into the 
framework of the previous section. 
 
On the other hand, we can define a smooth, approximate merit function given by: 
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                                              ))(()()( xgvxfx ϕψ +=                                                                    (39) 

                                          ))((')()()( xgxgvxfx ϕψ ∇+∇=∇                                                     (40) 

Here  we need  to  assume  that ))(( xgϕ  has  second  derivatives  that are  uniformly  Lipschitz 
continuous. Examples include using the classical quadratic penalty, applying an extended barrier 
function.  (See Srinivasan et al., 2008), or smoothing the max operator in (42).  If we apply the 
smoothed max operator, we can make )(xψ  arbitrarily close to )(~ xψ . A similar trust region 
framework was developed in Agarwal and Biegler (2011).  From the development in the previous 
section, we can state the following properties: 
 

• From the fully linear property for )(),(),(),( xgxgxfxf rr  and 

 

                      

))(('))()(()()()(
))(('))()((

)))(('))((')((()()(
)))((')())((')(()()(

)))(())((()()()()(

2 xgxgxgOxfxf
xgxgxg

xgxgxgvxfxf
xgxgxgxgvxfxf

xgxgvxfxfxx

rrr

rr

rr

rrr

rrr

ϕ

ϕ

ϕϕ

ϕϕ

ϕϕψψ

∇−∇+∆+∇−∇=

∇−∇+

−∇+∇−∇=

∇−∇+∇−∇=

∇−∇+∇−∇=∇−∇

 

It is easy to see that the fully linear property holds for the modified 1l penalty function 
as well, i.e.: 

 
                                        2|)()(| ∆≤− ψκψψ xx r                                                                                        (41) 

                                     ∆≤∇−∇ ψκψψ g
r xx ||)()(||                                                                               (42) 

 
• If (27) has a local solution that satisfies KKT conditions and a constraint qualification, then 

bounded KKT multipliers exist.  In this case, it is well known that there exists a finite value 
of ν 0>v  such that the solutions  to (27) are equivalent  to solutions  of the nonsmooth  
unconstrained problem: 

                                                            (43) 

• Similarly, solutions  to (28) are equivalent to solutions  of the nonsmooth  unconstrained 
problem: 

 
                                                  (44) 

• Solutions x∗ of (9), (27) and (43) are equivalent. 
• Solutions x∗ of (10), (28) and (44) are equivalent. 

For nonsmooth problems (43) and (44) gradients of the objective function cannot be used to 
identify stationary points for the TR algorithm.  Instead, Conn, Gould and Toint (2000) use 
directional derivatives to define the following first-order criticality measures: 
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                                         |)(~min|)(

1||||
xDx r

pp

r ψχ
≤

=                                                                                       (45) 

and
                                      |)(~min|)(

1||||
xDx pp

ψχ
≤

=                                                                                  (46)  

For the analysis in this study, we do not use these directional derivatives and instead work directly 
with the smoothed merit functions )(),(),( xxx r ψψψ ∇ and )(xrψ∇ . The trust region problem 
analogous to (2) is given by 

                                           ))(()()(min sxgvsxfsx k
r

kk
r

s k

+++=+
∆∈

ϕψ                                  (47) 

For  the  solution  of (43)  and  (47)  we apply  a  fixed penalty  parameter ν  that is assumed 
sufficiently large.  Moreover, because (44) has an equivalent solution to (10), problem (47) is never 
solved directly.  Instead (10) is solved with the trust region constraint kkxx ∆≤− |||| . 

Finally, in the modified trust region algorithm, we also restate the condition for fraction of 
Cauchy decrease. Instead of (4), we again follow Conn, Gould and Toint (2000) and use: 

                                kk
rfcd

k
r

k
r xsxx ∆∇≥+− ||)(||

2
)()( ψ

κ
ψψ                                                (48) 

The modified algorithm is stated as follows

Algorithm II 

1. Choose constants 10 10 <≤≤ ηη  (with 01 >η ), )1,0(∈γ , 1>incγ , tolerance tε  and 

0>µ . Choose an initial point 0x and 0max >∆  along with 0∆ and model )( 0 sxr +ψ  
 

2. At iteration k , if   tk
r x εψ >∇ )(  then go to Step  3.   Else, if µ>∆ k , )( k

r xψ∇ or 

)( sxk
r +∇ψ is not  fully linear  for ks ∆∈ , then  construct a new model )( sxk

r +ψ
that is fully linear  on a (possibly  smaller)  trust region with

}||,)(||min{: kk
r

k x ∆∇=∆ ψµ . This may require construction of new RMs based on 
additional evaluations of the ODM. 
 

3. Solve (approximately) the  trust region  problem  (47)  and  compute  the  step  sk   that 
provides a fraction  of Cauchy  decrease (48).      

4. Assess the acceptability of the trial point;  define 

                                           
)()(

)()(

kk
r

k
r

kkk
k sxx

sxx
+−
+−

=
ψψ
ψψρ                                                    (49) 

and consider the following conditions: 
 

• If
1ηρ ≥k  , set kkk sxx +=+1

and potentially increase trust region using

},min{ max1 ∆∆=∆ + kinck γ .  This is called a successful iteration. 
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• If 0ηρ ≥k and the model is fully linear, set kkk sxx +=+1
and decrease trust 

region, kk ∆=∆ + γ1 . This is called an acceptable iteration. 
• If 1ηρ <k and the  model is not  fully linear,  then  set kk xx =+1  and apply  model 

refinement to attempt to make )(xrψ fully linear on k∆ , possibly through  
additional evaluations of the ODM. This is called a model improving iteration. 

• If 0ηρ <k and the model is fully linear, then set kk xx =+1 and  decrease  trust 
region, kk ∆=∆ + γ1 . This is called an unsuccessful iteration. 

 
5. Set k = k + 1 and go to Step 2. 

 
Under the assumptions that )(xψ is bounded below, that the fully linear property holds (or 

can be made to hold) at kx and that )(xf and )(xg have Hessians with a bounded  norm, it 
is possible to modify the first order convergence proofs in Conn et al.  (2008) to show that 

0||)(||lim =∇∞→ kk xψ . 
 

 
5    Special Cases from Algorithm II 
 
 

 
 

Figure  2. Trust Region Method without Detailed Model Gradients 
 

Algorithm II is sketched in Figure 2. For the flowsheet optimization problem with 
heterogeneous models, as illustrated by the IGCC process in Figure 1, it is particularly clear 
that frequent recourse to the original CFD models during the optimization step may be 
prohibitively expensive.   In  fact,  checking  the  ODM  model  at  the  solution  of the  RM-
based  flowsheeting optimization problem  may  be all that the  computing  budget  allows.  To 
deal with this challenging restriction, we develop RMs with the following characteristics: 
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• Efficient space-filling experimental designs are used to construct the RMs. 
• RMs are poised, i.e., sampling points are chosen and RMs are found that are well-posed 

and well-conditioned.   Kriging models with radial basis functions are a good choice for 
this. 

• The RM-based trust region subproblem (47) is formulated based  on the  overall  flow- 
sheeting  model with an initial  large trust region. 

• This RM-based subproblem is solved to convergence. 
 
The above characteristics can greatly simplify the algorithm in Figure 2.  In fact, since the RM-
based model is always fully converged and tk

r x εψ ≤∇ )( , only the grayed steps in 
Figure 2 apply and Steps 3 and 4 in Algorithm II are bypassed.  Instead, once the RM-based 
optimization is determined, the only remaining concern lies in maintaining the fully linear 
property of the RM. 
 
In the  next  section,  we consider  a special case, where the  error  between  the  ODM  and RM 
is small in the  domain  of interest. We call these reduced models ε −exact.  Under these 
conditions, an improved bound can be derived for ψ∇   as well as the distance between the 
minimizers of (48) and (49).  This leads to a simplication of the algorithm. 
 
5.1     An Improved Bound for )(xψ∇  
 

Assume that (8) holds and that the RM and ODM are related by: 
 

                                                                 δ≤− ||)()(|| urud                                                                (50) 
for all Uu u ⊂∆∈ . This bound can be achieved through extensive pre-computation of RMs 
using space-filling designs and applying cross-validation to establish the error bound δ. By 
following an analysis similar to that of Section 3, one can show that this error bound translates 
to: 

                                                          εψψ ≤− |)()(| xx r                                                        (51) 

for all Xx ⊂∆∈ .  We term the reduced models that lead to the inequality  (56) ε −exact 
models. 

Here we will see that ∆  only needs  to  be large  enough  to  contain  a well-poised set  of 
points,  ix , i = 1, . . . nx.  Within some region ∆  we choose this set of points and define the 
matrix: 

                                    )](,),(),[( 21 xxxxxxL
xnL −−−= δ                                      (52) 

where Lδ  is the diameter  of the set ∆. Also, if we choose a minimal positive basis (see Conn et 

al., 2009), then L = I . From Lipschitz continuity of )(xψ∇ and )(xrψ∇ , we can write: 

                  22 ||||
2

)()())()((||||
2

xxvxxxxxxxv
ii

T
ii −≤−∇−−≤−− ψψψ                      (53)  

              22 ||||
2

)()())()((||||
2

xxvxxxxxxxv
i

r
i

Trr
i

r
i

r −≤−∇−−≤−− ψψψ                   (54) 

 
with Lipschitz  constants ν, νr  > 0. Noting that: 
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                 2||||
2

)()())()(( xxvxxxxx ii
T

i −
−

≥−∇+− ψψψ                                                 (55) 

                 2||||
2

)()())()(( xxvxxxxx i
r

i
Trr

i
r −

−
≥−∇−− ψψψ                                               (56) 

and from (51), we have: 

      2||||
2

)()())()((|)()(| xxvvxxxxxx i
r

i
Trr −

+−
≥−∇−∇+−+ ψψψψε                  (57) 

Leading to: 

                        |)())()((|||||
2

)(2 2 xxxxxxvv
i

Tr
i

r −∇−∇≥−
+

+ ψψε                              (58) 

where the absolute  value follows because the inequality is symmetric  with respect to x and xi . 
 

By defining ]1,,1,1[ =Te and ]||||,,||||,||[|| 22
2

2
1 xxxxxxe

xn
T
x −−−=   we concatenate the 

above equation over all points ix , take norms and write: 

                      L
TrT

x
rT Lxxevve δψψε ||))()((||||

2
)(2|| ∇−∇≥

+
+                                         (59) 

Choosing ix such that IL = , noting that xne =|||| and 22 |||| iL xx −≥δ gives us: 

                    ||)()(||)
2

)(2( xxnvv r
xL

r

L

ψψδ
δ
ε

∇−∇≥
+

+                                                  (60) 

Finally, we set x = x̄, the solution of (44).  This give 0)( =∇ xrψ , leading to: 
 

                                    ||)(||)
2

)(2( xnvv
xL

r

L

ψδ
δ
ε

∇≥
+

+                                                   (61) 

Since the choice of  is arbitrary, we set it to 
 

2/1)(2
r

L vv +
=

εδ  

 

to minimize the bound  on   )(xψ∇ , which becomes: 
 

                                             )(2||)(|| rx vvnx +≤∇ εψ                                                          (62) 

Clearly, when 0→ε , then 0)( →∇ xψ  and a KKT point for (44)  approaches  the KKT point of 
(43) 

In addition, we can derive a bound for   x∗ − x̄. Application of Taylor’s theorem gives: 
 



15  

                             ττψψψ dxxxxx )*))((()(*)(0
1

0

2 −∇+∇=∇= ∫  

)*)(*,()(*)(0 xxxxWxx −+∇=∇= ψψ                                                  (63) 
 
 

where )*()( xxxx −+= ττ . Here we note that *)(2 xψ∇  is the reduced Hessian at the optimum 
of (43) and we make the following assumptions: 

• The fully linear property (42) holds over the current trust region ∆. 
 

• For some compact, convex region X̄ with x∗, x̄ ∈ X̄ , W (x∗, x̄) is uniformly bounded  and 
positive definite for all x ∈ X̄ . 

 
This leads to: 
 

                      22 ||*||)*)(*,()*(||*|| xxvxxxxWxxxxv T −≥−−≥− −+                             (64) 

where −v   and +v are less than  the smallest and greater  than  the largest eigenvalues, respectively, 
of W (x∗, x̄). From (63) we can write 
       )()*,()*( 1 xxxWxx ψ∇−=− −  

                                         

 

where  the  last  three  inequalities  follow from (63),  (64)  and  the  definition  of the  condition 
number  κ.  Assuming that +≤ vvv r, gives the bound: 

                                         2

2/12/3

)(
)()2(||*||

−

+≤−
v

nvxx xε
                                                            (65) 

and we note that as 0→ε , *xx →

From this bound we propose the following refinement strategy for ε −exact models.  Moreover,  since 

−v   and +v are  difficult  to  obtain  from the  detailed  model,  we can  substitute the eigenvalues  
rv−   and rv+ from the  reduced  Hessian of the  reduced model.  This is likely to be a good 

approximation for small values ofε .

Algorithm III 

1. Choose constants 10 10 <≤≤ ηη  (with 01 >η ), )1,0(∈γ , 1>incγ , tolerance tε  and xε , 
and bound  parameters +v −v for (65).  Choose an initial point 0x and 0max >∆  along with 

0∆ and 0ε   to specify exactness of the model. 
2. At iteration k, for , develop a space-filling experimental design and 

apply a validation procedure, such as cross-validation, to establish an ε −exact set of 



16 
 

reduced models with objective function )(xrψ and k
r xx εψψ ≤− |)()(| . 

3. Solve the trust region problem (47) with solution x̄. If   t
r x εψ >∇ )( , go to Step 5. 

4. If xk εε ≤ , STOP.  Else, set ,1 xxk =+ kk γεε =+1 ,  update }|{ 11 ++ −=∆ kk xxx  using 
       (65) with 1+kε , set k = k + 1 and go to Step 2. 
5. Assess the acceptability of the trial point.  (Here the assumption on (65) does not hold and 

problem (47) terminates successfully at the boundary of k∆ .  Since the reduced model is fully 
linear, we continue instead with the TR steps from Algorithm II.) Define: 
 

                                                   
)()(

)()(
xx

xx
r

k
r

k
k ψψ

ψψ
ρ

−
−

=                                                     (66) 

and consider the following conditions:
 

• If 
1ηρ ≥k set  ,1 xxk =+ and potentially  increase  trust region  using  

},min{ max1 ∆∆=∆ + kimck γ  
• If 0ηρ ≥k , set ,1 xxk =+

and decrease trust region, kk ∆=∆ + γ1
. 

• If 
0ηρ <k , then  ,1 kk xx =+

and decrease trust region, ∆k+1 = γ∆k . 
 

6.  Set k = k + 1 and go to Step 2. 
 

6    Case Study Examples 
 
In above section it is frequently mentioned the fully linear property that plays a key role in the 
derivations. In order to guarantee this property, a sophisticated design of experiments (DOE) is 
important. Briefly speaking, when the radius ∆  of a trust region or closed ball is determined, it is 
necessary to ensure that it contains at least n+1 sampling points within it, on the other hand, the points 
distribution must satisfy the measure of space-filling. Of course, the smaller the closed ball, the 
smaller the error in ε -exact models, which means more sampling points are better. To illustrate the 
importance of the DOE, space-filling and∆ , we give three examples.  

Example1. Peak and valley problem 

This is an unconstrained minimization problem with two independent variables. 

                        3,2..
)1.0(1.0)(exp()(min

21

2
2

2
1

2
2

2
11

≤≤−
+++−=

xxts
xxxxxxf

          [NLP 1] 

The profile of f(x) is as shown in Figure 3 in 3-D and its contour. To solve NLP3 with its RM, we 
developed four ε -exact Kriging models with Nx = 27, 48, 75 and 300 sampling points, respectively. 
The design of experiments (DOE) for the RM is shown in Figure 4 (a)-(d). The leftmost graphic gives 
the DOE, the middle gives the RM contour and the rightmost shows the approximated 3-D profile by 
the RM. We then solve NLP3 with its respective RMs, and the results along with the true solution are 
listed in Table 1. 
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Figure 3. Profiles of NLP1 

 

 

 

  

(a)  Nx = 27                                                                            (b) Nx = 45 

 

 

 

                      (c) Nx = 75                                                                             (d) Nx = 300 

Figure 4.  RMs of NLP1 with different DOE. 
Left–Results of DOE; Middle – contours of RM; Right– 3D profiles 

 
Table 1. Comparison of results with different RMs 
 Objective X1 X2 

True -0.636127392935813   -0.383961517686256 -0.000000857336992 
 

Nx 
27 -0.604607912803695    -0.349766822020327 0.015809775403955 
48 -0.634278760540868    -0.376170012473266 0.002851103935254 
75 -0.632737704868186   -0.383469471493864 0.000890245685945 
300 -0.636127448872631    -0.383961555413930 0.000001383330600 

 

The results show that when the error of ε -exact model goes to zero (as Nx is increasing), the solution 
obtained by RM is close to its true optimum, as indicated by (65). 

Example 2. Rosenbrock problem 

The Rosenbrock function has been used by many authors because its stationary point is located in a 
flat valley.   The problem is the bound constrained minimization of Rosenbrock function     

                                                     
2,1..

)1()()(min

21

2
1

22
12

≤≤−
−+−=

xxts
xxxxf

      [NLP 2] 
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                  (a) Profile of Rosenbrock                                                               (b) LHD-1  

 

 

 

                    (c) LHD-2                                                                   (d) LHD-3 

Figure 5. LHD gives different designs even when maximin is used and we pick the best one among 
1000 random designs for each of the designs above. (Left – results of LHD; Middle – contours of 
RMs; Right – 3D profile of RMs)      

We intend to use this example to show the importance of space-filling in DOE. Figure 5 gives three 
LHD results (Figure 5 (b)-(c)) with Nx = 15. It obvious that even if the numbers of the sampling points 
are the same, Nx =15 the RMs perform significantly differently because of the different distributions 
of the sampling sets. As reference, we give the true profile of Rosenbrock function as well in Figure 5 
(a). 

 

 

 

                                 Seed = 1                                                                                                            Seed = 2 
 

 

                                                                            

                          Seed = 3                                                                                          Seed = 4 

Figure 6. Results of TPLHD with different patterns 
Left – results of TPLHD; Middle – contours of RMs; Right – 3D profile of RMs 

 

To improve on LHD we introduce Translation Propagation Latin Hypercube Design (TPLHD) (Viana 
et al.,  (2010)). Figure 6 shows the four different patterns used in TPLHD.  From the results of 
TPLHD, we can see that the sampling points are distributed more evenly than that of LHD. In the 
other word, the results of TPLHD are better in the criterion of space-filling. We can imagine that when 
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iterative optimization computation is implemented, any new point, kx on the search path of the 
optimization has the following characteristics: 

Formulate a closed ball }|{:),( kkkkk xxxxB ∆≤−=∆ , we can verify that as long as k∆ is 
well-designed, kB can enclose at least n+1 sampling points within it, which guarantees that the 
RMs possess fully linear property in iteration k (Conn et al., 2009). 
 

From Figure 5 (a) we can observe that the minimum of the Rosenbrock is located in a relative flat 
valley, which means that a small error in RM will lead to larger errors in finding the minimum. The 
results show that in fact when Nx = 48, the solution by RM is close enough to the true optimum. This 
fact proves that Algorithm III is suitable for ε -exact models, i.e. as long as the RM has smallε , an 
accurate optimal solution can be still obtained without recourse to its ODM. 

Table 2. Results of Rosenbrock function with its RMs 
 X1 X2 Objective 
True  1.000000055032763 1.000000075591546 4.217060554804743e-015 
 
Nx 

 27 1.031327347381811 1.056060015084665 -0.010661961379137 
48 0.999869890209556 0.998784689492565 -1.321751617933131e-006 
75 0.998570208150591 0.996507645503141 4.064909972179009e-006 
300 1.000035059566996 1.000081678268593 -8.986803883281880e-007 

 

Example 3. NLP with a cubic constraint 

In this example, we only use the constraint, a cubic curve, as the ODM and we choose a Kriging 
approximation of this constraint as the RM.  

                                                             
32,31

1..
)(min

23

22

≤≤−≤≤−
++=

+=

yx
xxyts
yxxf

          [NLP3]                        

   
(a)                         (b)                            (c)                           (d)                          (e) 

 
Figure 7.  Plots of NLP3 with its RMs of the constraint.  

Figure 7 illustrates the profile of the constraint cures and its RMs with different numbers of sampling 
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points for the Kriging model. Figure 7 (a), shows the profile of objective function (green curve) and 
the constraint (red) plotted in the contour objective field. From the objective cure we can figure out 
that there are two local minima, at values of 1.9313 (@x=-1.28) and 1.0000 (@x=0), respectively. 
That implies that with different starting points, the NLP3 might converge to different local solutions, 
which are indicated in Table 3. From (b) to (e), are the profiles of RMs of the constraint with Nx =5, 6, 
7 and 10, respectively. These plots show how well the RMs,ε -exact models approximate the true 
constraint. It is seen that when 7≥Nx ε becomes very small so that no error could be observed from 
the figures (d) and (e) (red and blue curves are essentially identical). Consequentially, the solutions 
obtained with the good RMs are very close to the ODM. This can be seen in Table 3 that gives two 
local minima. The results in Table 3 indicate that when the ε -exact models are developed with 
smaller error (when Nx = 7 or 10), they perform just like the ODM.  
 
Table 3.  Results of NLP 3 with different ε -exact models 

 Starting point Objective Value Optimal Variables 
x y 

ODM -1.9     2.9 1.9313 -1.2785 0.5448 
                 -0.9   1.9                 1.0000                0.0000              1.0000 

ε -exact models  
 
 
 
 
Nx 

5 -1.9     2.9 0.5161 -0.6162 0.3693 
                 -0.9   1.9                 0.5161               -0.6162              0.3693 

6 -1.9     2.9 1.9902 -1.3648 0.3570 
                 -0.9   1.9                 0.9484                0.0516              0.9725 

7 -1.9     2.9 1.9314 -1.2785     0.5448 
                 -0.9   1.9                                 1.0000                 0.0000              1.0000 

10 -1.9     2.9 1.9313 -1.2785         0.5448 
                 -0.9   1.9                1.0000                 0.0000               1.0000 

 

Example 4. IGCC optimization with CFD-based RMs 

We now demonstrate the above approach with the optimization of the advanced IGCC process 
shown in Figure 1.  In addition  to  the  lumped  parameter  flowsheeting  models,  the  process 
model contains  two  CFD  models,  for the  gasifier and  combustor.  As described in Lang et al.  
(2009) and Lang et al.  (2011),  RMs were developed  for both  CFD  models using Latin 
Hypercube  Sampling  for the experimental design and PCA-based reduction  of the snapshots of 
their  vector  fields at  each sampling  point.   For the combustor RM, a Kriging model was 
developed to map the process inputs to the output streams, while an artificial neural network 
(ANN) RM was developed for input-output mapping of the gasification unit.  Cross-validation on 
both RMs showed excellent predictive capabilities over the entire input space.  Both output 
temperatures and compositions were typically predicted with relative errors of less that 1%.   

Full details of the RM construction and validation of these models are given in Lang et al.  
(2009). A sample comparison of the RM model is shown for the gasifier in Figure 8. It is notable 
that sampling points of the CFD combustor model required over 30 CPU min, while the CFD 
gasifier model required as much as 20 CPU h.  On the other hand, each of the resulting RMs could 
be executed within 1 CPU s. 
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Figure 8. Gasifier vector field with FLUENT result  (left) and RM prediction  (right)  

In our previous work, we integrated CFD based RMs of the gasifier and the combustor within an 
IGCC power plant flowsheet and implement optimization of the process. The resulting optimization of 
the power output of the IGCC process with seven independent variables, led to an increase of 23MW 
or 6.8% (Lang et al. 2011). How is this result related to its true optimum? Following the derivations in 
above sections, we can be confident that since the RMs of gasifier and the combustor are ε -exact 
models with smallerε ’s, according to (65) the optimal solution of the IGCC flowsheet with RMs are 
very close to the true optimum, even though this would be very difficult to obtain directly with their 
CFD models. 
 
7   Conclusions and further works  
 
Starting from a trust region algorithm for derivative free optimization, we extend this algorithm for 
process flowsheet optimization with multiple scale models. By introducing the exact penalty function, 
we further extend the algorithm from unconstrained optimization problems to consider constrained 
problems. With fully linear properties of RMs, we proved that the errors between RMs and their ODM 
are bounded during the iterative computations which lead to that the optimal solutions with RMs are 
close to the ODM. Especially, we term ε -exact models with which we can obtain reasonably good 
approximations to the optimum without recourse to the ODM during the optimization. 
 
With these theoretical derivations, we have confidence that our previous results of IGCC optimization 
are reliable. 
 
Also we mention that to develop good ε -exact models, sophisticated DOEs are necessary and worth 

H2S Mass Fraction H2O Mass Fraction H2 Mass Fraction  Temperature 

CH4 Mass Fraction CO2 Mass Fraction CO Mass Fraction 
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spending time and effort off-line. Here space-filling DOEs are strongly recommended. With a few 
simple examples, the performances of our algorithms are illustrated with excellent results. 
 
Finally, we have not implemented any further case studies of flowsheet optimization with multiple 
scale models; this is beyond the scope of this project, and no resources were provided for this. 
Nevertheless, this can be investigated by making up a virtual, complicated process in which some 
units can be replaced by their RMs. With this case, we plan to apply our developed algorithms for 
further examination. 
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