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Carbon Capture Simulation Initiative
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M d l f th i iti l d t ti f CCSI P S th i d D i T l t

Heat integration approach
Models from the initial demonstration of CCSI Process Synthesis and Design Toolset

CO2 Compression System  
(Simulation Model)

CO2 Capture System
(Simulation Model)

Steam cycle
(Simulation Model)

Excel interface for exporting ‘stream data’ (SINTER)

Steam Cycle Heat Exchanger Network y
Optimization Model 

(Mathematical model)
(HEN) Optimization Model 

(Mathematical model) 

Integrated Analysis
Minimize energy penalty on power plant
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Supercritical power plant steam cycle
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Modeling of power plant steam cycle

• Basis: Simulation developed in Thermoflex

• Optimization model is developed in GAMS

• GAMS model: algebraic representation of steam cycle
– Mass and energy balances 
– Correlations for steam/water enthalpy prediction
– Corrections for turbine efficiency
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Modeling of power plant: some aspects
A t th l l ti f ti f t t d• Accurate enthalpy correlations as a function of temperature and pressure
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Steam inlet flow (10^4 kg/hr)



• Solid sorbent carbon capture process is from Chang et al., 2011
Steam extraction for sorbent regeneration

p p g ,
– 2 bubbling fluidized bed adsorbers and 1 moving bed regenerator
– Steam required: 138 GJ/hr/train (10 parallel regenerator trains)

• Steam extraction from IP/LP crossover (@100 psi)
C d d i d h d i h BFH i– Condensed steam is returned to the deaerator in the BFH section

CO2 Capture Process IP/LP Steam extraction
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Chang et al. (2011). Synthesis of optimal adsorptive carbon capture processes. AIChE annual meeting, Minneapolis, MN 



2 stage sequential optimization methodology

1. Optimize steam cycle for required steam extraction rate
i Determine feasible temperature profile in BFHi. Determine feasible temperature profile in BFH 

section subjected to the amounts/quality of available 
‘heat sources’ from capture & compression systems

ii. Min. parasitic loss assuming available heat can be 
used.

2. Determine optimal matches (location of HX’s) to 
integrate heat from capture & compression back into g p p
steam cycle to achieve 1.
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Stage 1: Steam cycle and HEN model integration
All the ‘heat so rces’ in the CO capt re and compression processes generall• All the ‘heat sources’ in the CO2 capture and compression processes generally 
provide ‘low-grade heat’ (i.e., < 2500C). 
– This heat can be fed into the steam cycle through the BFH section and 

cannot directly be used in the boiler to produce HP steam
– In practice, part of this heat may also be used to produce LP steam to drive, 

for instance, auxiliary equipment
• Heaters (red circles) are assumed in the LP BFH section and these heaters can 

use ‘hot energy’ from CO2 capture & compression processes
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H t ( d i l ) h tili d h t f t d

Stage 1: Results
• Heaters (red circles) have utilized heat sources from capture and 

compression process (and hence temperature rose across heaters)
• Steam extraction at turbine stages is lowered to improve efficiency.

• Legend:
• Basecase (before heat integration) conditions are shown in black
• Case 2 (after heat integration) conditions are shown in red

15.1 kg/s17.9 kg/s17.0 kg/s
0.0 kg/s 0.0 kg/s 3.4 kg/s

LP1 LP2 LP3 LP4

Temp (C) profile in the BFH section:
128 1 128 1 96 6 96 6 62 4 62 4 34 7 34 7

Condenser

128.1        128.1                           96.6       96.6                             62.4      62.4                      34.7      34.7
120.2        114.0                           87.4       69.5                             66.2      66.1                      51.1      37.8

HXLP3HXLP2HXLP1
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Stage 1: Results (continued)

• Basecase (without heat integration): 
– Net efficiency: 44 3%  33 8%Net efficiency: 44.3%  33.8%
– Gross power: 709 MWe  553 MWe

• Case 2: i.e., with heat integration (by using heat sources 
available in CO2 capture and compression processes)
– Net efficiency: 33 8%  36 4%Net efficiency: 33.8%  36.4%
– Gross power: 553 MWe  591 MWe
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Stage 2: Model for optimal HEN design
• Given:

– Process and utility stream data 
• Tin, Tout, heat capacity & heat transfer coefficients

– Cost dataCost data

• Objective is to:
– Minimize total cost of the network

• While optimizing (i.e., decision variables):
– Hot and cold stream matches (binary variables)
– Load approach temp and area of each heat exchanger (continuousLoad, approach temp and area of each heat exchanger (continuous 

variables)

• Formulation (Yee and Grossmann, 1990)
– Multi-stage network with isothermal mixing

Yee and Grossmann (1990) Simultaneous optimization models for heat integration 2 Heat exchanger network synthesis
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Yee and Grossmann (1990). Simultaneous optimization  models for heat integration – 2. Heat exchanger network synthesis. 



Stage 2: Stream data for hot and cold sources 

HOT STREAM DATA COLD STREAM DATA

Stream
Name

TIN 
(C)

TOUT 
(C)

MCp
(MJ/hr-C)

Stream
Name

TIN 
(C)

TOUT 
(C)

MCP
(MJ/hr-C)Name (C) (C) (MJ/hr-C) Name (C) (C) (MJ/hr-C)

FlueGas_Cooler 81. 43. 13646. BFW heater3 38. 51. 2,200
ProdCO2_Cooler 71. 40. 22933. BFW heater2 66. 66. 2,201

IC_01 86. 43. 612. BFW heater1 69. 87. 2,209
IC 02 88 43 643 BFW h 114 120 2234IC_02 88. 43. 643. BFW heater0 114. 120. 2234
IC_03 86. 43. 563.
IC_04 88. 43. 513.
IC_05 87. 43. 490._
IC_06 89. 43. 488.
IC_07 254. 60. 802.
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Stage 2 Results: HEN configuration
L dLegend:
Dashed lines represent HEN 
connections and circles on the  
dashed lines represent  
l ti f h t h ith

10 stage CO2 compressor train
locations of heat exchange with 
BFH section

Note:
HEN fi ti iHEN configuration is 
preliminary and further 
improvements/investigation are 
necessary

254.5 C
151.6 C

120.2        114.0         87.4      69.5             66.2      66.1           51.1      37.8

Intercooler 7  (from 
compression system) is 
sufficient to satisfy heating 
l d th BFW h tloads on the new BFW heaters 
(red circles).  Heat available in 
flue gas cooler and product 
CO2 cooler (from capture 

) t d d

BFW
heater1

BFW
heater2

BFW
heater3

BFW
heater0

LP boiler feed heating (BFH) section
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Conclusions and future work
Ri ti i ti d l f iti l l t i• Rigorous optimization model for a supercritical power plant is 
developed
– Optimization of BFH temperature profile can help reducing energy p p p p g gy

penalty due to steam extraction (for sorbent regeneration). 

• Net efficiency can be improved from 33.8% to 36.4%. 

• Work in progress:
– Integrate into single stage, simultaneous algorithmg g g , g
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Thi t ti d t f k

Disclaimer
This presentation was prepared as an account of work 
sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, 

f h i l knor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, 

d di l d h iapparatus, product, or process disclosed, or represents that its 
use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade 

d k f h dname, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government 
or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.
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