

Center for **Gas Separations** Relevant to **Clean Energy** Technologies

Integrating the Carbon Capture Materials Database with the process simulation tools of the Carbon Capture Simulation Initiative

Hosoo Kim¹, Maciej Haranczyk², Tom Epperly³, Mahmoud Abouelnasr⁴, David Mebane⁵, Berend Smit⁴, Joel Kress⁶, and David C. Miller¹

¹National Energy Technology Laboratory, ²Lawrence Berkeley National Laboratory, ³Lawrence Livermore National Laboratory, ⁴University of California - Berkeley, ⁵West Virginia University, ⁶Los Alamos National Laboratory

CCSI: Computational Tools to Accelerate Technology Development

Identify promising concepts Reduce the time for design & 2 troubleshooting Quantify the technical risk, to enable reaching larger scales, earlier Stabilize the cost during commercial deployment

Components of the CCSI Toolset

CCSI Process Synthesis & Design

Facilitate the rapid screening of new concepts and technologies

Enable identification & development of optimized process designs

- Multiple potential technologies for carbon capture
 - Different reactors types
 - Different sorbent materials
 - Different regimes (high T, low T, PSA, TSA)
- Need systematic way to evaluate candidate processes, materials
 - Need to consider <u>best process</u> for <u>different materials</u>
- Identify configurations for more detailed simulation (i.e., CFD)
- Integrate and optimize the entire process system
 - PC plant, carbon capture process, and compression system

Energy Frontier Research Center (EFRC)

Center for **Gas Separations** Relevant to **Clean Energy** Technologies

- Center for Gas Separations Relevant to Clean Energy Technologies
 - to develop new strategies and materials that allow for *energy efficient* selective *capture* or *separation* of *CO*₂ from gas mixtures based on molecule-specific chemical interactions.
- Plan and Direction
 - Capture of CO₂ from gas mixtures requires the molecular control offered by nanoscience to tailormake those materials exhibiting exactly the right adsorption and diffusion selectivity to enable an economic separation process. Characterization methods and computational tools will be developed to guide and support this quest.

Millions of Potential Materials

• Metals: Fe, Mg, Ca, Zn, Cu, etc

Pore topologies:
crb crb crb sod mer rho

Any combination of the above !!

Carbon Capture Materials Database (CCMDB)

- EFRC's database is a large collection of basic physicochemical data on solid sorbents (Currently it contains data on ca. 200,000 crystalline porous materials such as zeolites, MOFs and ZIFs)
- The database incorporates LBNL and EFRC-developed algorithms and software tools for characterization of porous materials: HPVOID (GPU Molecular simulation code) and Zeo++ (high-throughput geometry-based analysis of porous structures)

Lawrence Livermore

National Laboratory

os Alamos

NATIONAL LABORATOR

EST.1943

Users can access the data via a Web interface

rrrrr

BERKELEY LAE

Carbon Capture Simulation Initiativ

	_	Struc	tural Dati				2010.0
						Unit cell dimens	ions
	Materia	(Name:	ETR		a/b/c:	20.63A / 20.63	ACP.81A
	Formul	9	SianO	96	up/y	90 190 1120	
100 A					No. 100.84 A		
and have been set	Geometrical properties			N	o XRD pattern av	anabie	
	Max free sphere : Dif :		9.99 A 9.27 A 9.99 A		Performance properties (Flue gas : 14% CO ₂ at 1 atm pressure and 313 K)		
a strength of the							
· · · · · · · · · · · · · · · · · · ·							
and the second sec	Surface area(He):		1335.64 m ² /g		energy 2778.33 kJ/kg CO2		CO2
	Volume(He):		683.5048 Å ³		Purity at		
	Density		1541.4	16 kg/m ³	min.energy:	40.281 molar %	
Jmol					Working 0.247 wt %		
	Henry	Coefficient	and Heat	of Adsorptie			
Gas Name	Temperature (K)		Henry coeffiec		ient Heat of adsorption		
Carbon dioxide	300 300		6.52e-6 1.02e-5		-22.494 -11.914		
tätrogen							
	150	otherm Comp	parison G	CMC vs Dif			
Select GCMC Isotherm option	0.8	DI CO2	at 14 % (300K)			
	90.7	Dif N2 a	86 % (300K)				
	- 50						
No GCMC Isotherm found	Eos						-
	Gu.						F
Predict Isotherm based on Dif Model	Dad						10
and the second second	0.4						1
CO ₂ [14_96 Temperature[300_K							1
	0.3						1
Add predicted isotherm	0.2						de la
	- 3357						1
V min here	0.1	0.1			1		
Lotter Calculate							
Linear	0.0	2	10]	61	102 104	5+10 ⁴ 10 ⁵	\$210 ⁵ 10 ⁶
			in.		arrura /Da	C. S. M. March	a 14, 110

Material Screening using Fixed Bed Model

Flue gas N₂

Calculation of energy penalty

$$Q = \frac{(C_p \rho_{sorbent} \Delta T + \Delta h_{CO2} \Delta q_{CO2} + \Delta h_{N2} \Delta q_{N2})}{CO_{2p_1}}$$

$$W_{eq} = \left(0.75Q \cdot \eta_{carnot} + W_{comp}\right)$$

- Fixed reactor configuration
- Equilibrium model

Simulation Initiativ

No heat or mass transfer

rrrr

BERKELEY L

L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, In silico screening of carbon-capture materials, Nature Materials 11 (7), 633 (2012)

Estimating Potential Water Adsorption

simulated water adsorption in zeolite 13X (NaFAU, Si/AI ~ 1.24)

- Highly nonideal adsorption isotherm, with a convex isotherm – at low temperatures showing a discontinuity with an infinite slope.
- Once the water model is validated, it can be applied to various materials to predict adsorption selectivity for CO₂ over water.

- Zeolitic Imidizolite Frameworks (ZIFs)
- Water selective (bottom-right)
- CO₂ selective (top-left).

LABORATORY

EST 1943

Linkage Scheme: EFRC's DB – CCSI Toolset

 CCSI designed and developed an Application Programming Interface (API) and corresponding data formats to provide CCSI access to the data in the EFRC's database.

Solid Sorbent Moving-Bed Reactor

Modeling Scheme

Shell (Gas, Solid) & Tube (Steam) Type Uniform Flow for Solid Phase (Const. vel.) Eff. Thermal Conductivity

Plug-Flow for Gas Convection w/Axial Dispersion Pressure Drop using Ergun Eqn

Mass Transfer

- External Film Resistance
- Intra-particle Diffusion
- Heat Transfer
- Convective

Adsorption & Desorption Kinetics

Heat Transfer

- Wall Gas
- Wall Solid

Heat Transfer Bet'n Wall & Steam

Simulation of Adsorber/Regenerator

Estimating Material Performance using CCSI Moving Bed System

Example: Comparison of Material Performance using CCSI Moving bed System

Potential Future Application – Automated System Optimization for Further Screening of Promising Database Sorbents

Lawrence Livermore National Laboratory

Pacific

Northwest

NATIONAL LABORATORY

Los Alamos

NATIONAL LABORATOR

EST.1943

rrrrrr

BERKELEY LAB

Carbon Capture Simulation Initiative

ENERGY 15

Conclusions: Identifying promising concepts

- How? Computationally screen sorbent materials, devices, and processes
- **CCSI Example**: Toolset was linked to database developed by UC Berkeley Energy Frontier Research Center (EFRC)
 - EFRC database contains over 100,000 zeolite and zeolitic imidazolate framework (ZIF) sorbent structures¹
 - CCSI moving bed system used for comparing sorbent materials
- Benefits
 - By identifying promising concepts early, time and money are saved because the development efforts are only directed toward potentially successful systems

Lawrence Livermore

National Laboratory

1. L.-C. Lin ... B. Smit, In silico screening of carbon-capture materials, Nat Mater 11 (7), 633 (2012)

os Alamos

EST 1943

Questions?

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

