Why?
- Solid sorbents are a promising option to reduce the energy penalty associated with capturing flue gas CO2.
- System simulations are needed to consider various process tradeoffs.
- Reactor models for these types of processes are not currently available in commercial process simulators.

Features
- Predictive computational 1 dimensional PDE process model for moving bed reactors.
- Flexible in wide range of operation conditions (unit size, gas and solid flowrates and compositions, particle properties and etc.).
- Includes reaction kinetics and correlations for heat and mass transfer between gas, solid and immersed heat exchanger tubes.

Major Equations

Gas Phase Balance Equation
\[
\dot{w}_\text{gas} = \left(\rho_f \right) \frac{d\rho_f}{dt} = 0
\]

Solid Phase Balance Equation
\[
\dot{w}_\text{solid} = \left(\rho_s \right) \frac{d\rho_s}{dt} = 0
\]

Tube-side Balance Equation
\[
\dot{w}_\text{solid} = \left(\rho_s \right) \frac{d\rho_s}{dt} = 0
\]

Optimization Framework

Objective Function
- Maximum gas velocity in reactors.
- Minimum approach temp. in HXs.
- Etc.

Design Variables
- 2 Integer variables
 - Number of ADS units
 - Number of RGN units
- For each reactor (ADS, RGN)
 - Diameter and height
 - Avg. voidage
 - Tube diameter
- Other operating variables for ADS
 - # of tubes
 - Gas inlet temp. in ADS
 - Sorbent inlet flowrate and temp.
- Other operating variables for RGN
 - Steam inlet flowrate
 - Circulation medium flowrate
 - Extent of regeneration

Process Model
- Objective value: 110.46 $/MWh
- After 1600 designs evaluation over 32 hours.
- High % of "error designs": 38% - Large non-feasible area.
- Design History:

Optimal Design
- 15 ADS units + 12 RGN units
- Objective value: 110.46 $/MWh
- After 1600 designs evaluation over 32 hours.
- High % of "error designs": 38% - Large non-feasible area.
- Design History:

Acknowledgements
This project is funded through the U.S. DOE Carbon Capture Simulation Initiative (CCSI), a partnership among national laboratories, industry, and academic institutions to develop and deploy state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies in power plants from discovery to development, demonstration, and widespread deployment.

Contact Information
Hosoo Kim, Ph.D., ORISE Postdoctoral Fellow
hosoo.kim@ornl.gov
David G. Miller, Ph.D., CCSI Technical Lead
David.miller@netl.doe.gov

Development of Moving Bed Simulation Model for Carbon Capture From Fossil Energy Systems

Hosoo Kim and David Miller

U.S. Department Of Energy, National Energy Technology Laboratory, Morgantown, WV