

Optimization of Amine-Based Solid Sorbent Chemistry for Post-Combustion Carbon Capture Qianwen Gao ORISE Postgraduate Fellow David C. Miller US Dept. of Energy, NETL October, 2015

Soda bubbles macro by en:User:Spiff via Wikimedia Commons. Microcapsules photo by by John Vericella/LLN

National Energy Technology Laboratory

Introduction

Background

- Amine impregnated mesoporous sorbent
- Amine chemistry
- CO₂ capture process
- Simulation based optimization
- CO₂ capture system optimization
- Sorbent optimization
 - Design targets for sorbent properties
 - Base sorbent vs Hypothetical sorbent
- Conclusion

Amine-based Solid Sorbent

$$\begin{split} H_2 \mathcal{O}_{(g)} \leftrightarrow H_2 \mathcal{O}_{(phys)} & (1) \quad \text{Water Physisorption} \\ R_1 R_2 NH + C \mathcal{O}_{2(g)} + H_2 \mathcal{O}_{(phys)} \leftrightarrow R_1 R_2 NH_2^+ + HC \mathcal{O}_3^- & (2) \quad \text{Bicarbonate Formation} \\ 2R_1 R_2 NH + C \mathcal{O}_{2(g)} \leftrightarrow R_1 R_2 NH_2^+ + R_1 R_2 NC \mathcal{O}_2^- & (3) \quad \text{Carbamate Formation} \end{split}$$

$$\frac{da}{dt} = k_1 \left[p_1 - \frac{a}{K_1} \right] - k_2 \left[sap_2 - \frac{bw}{K_2} \right]$$
$$\frac{db}{dt} = k_2 \left[sap_2 - \frac{bw}{K_2} \right]$$
$$\frac{dx}{dt} = k_3 \left[s^2 p_2 - \frac{xw}{K_3} \right]$$

a: adsorbed water concentration
b: bicarbonate concentration
x: carbamate site fraction
s: free amine site fraction
w: protonated amine site fraction
p₁: CO₂ partial pressure
p₂: H₂O partial pressure

k_i: rate constants K_i: equilibrium constants

Amine Chemistry

Equilibrium constant expression

$$K_i = \exp\left(-\frac{\Delta S_i}{R}\right) \exp\left(-\frac{\Delta H_i}{RT}\right)/P$$

$$k_i = \mathbf{A}_i T \exp\left(-\frac{\mathbf{E}_i}{RT}\right)$$

R ₁ R ₂ NH Properties						
ΔH_i	reaction enthaply					
ΔS_i	reaction entropy					
E_i	activation energy					
A _i	frequency factor					

NETL -32D (Base Sorbent) Properties							
ΔH_1	-72,580	ΔS_1	-141.4	<i>E</i> ₁	29,623	A_1	0.1758
ΔH_2	-79,079	ΔS_2	-216.2	<i>E</i> ₂	83,174	<i>A</i> ₂	0.091098
ΔH_3	-109,691	ΔS_3	-281.3	E ₃	27,523	<i>A</i> ₃	141.994
$(\Delta H_i : J/mol \qquad \Delta S_i : J/mol/K \qquad E_i : J/mol)$							

Bubbling Fluidized Bed (BFB)

 1-D, two-phase, pressure driven and non-isothermal models

• Flexible configurations

- Adsorber or regenerator
- Under/overflow
- Integrated heat exchanger for heating or cooling

Supports complex reaction kinetics

Solid Sorbent-based CO₂ Capture Process

Sahinidis, N. V., A. Cozad, D. C. Miller and Z. Wil

Simulation Based Optimization

D.C. Miller, B. Ng, J.C. Eslick, C. Tong, Y. Chen, "Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture cesses," Proceedings of the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014, M.R. Eden, J.D. Siirola , G.P. Towner (Eds.),

7

CO₂ Capture Process Optimization

Objective

min Cost of Electricity (COE)

• Decision Variables

x : Design and Operating variables

Constraints

The CO₂ capture system model (Aspen Custom Modeler) Cost Calculation (Spreadsheet or ACM) CO_2 capture rate $\ge 90\%$ $x_{min} \le x \le x_{max}$

Decision Variables *x*

- Design variables
 - BFB dimensions
 - bed depth, diameter
 - Immersed heat exchanger tube diameter and spacing in adsorbers and regenerators
 - Solid Heat Exchanger dimensions
 - Flue gas cooler dimension

Operating variables

- Total sorbent circulation rate
- Regeneration section recirculation gas split fraction
- Temperature of the cooled flue gas
- Temperature of solid sorbent into the absorber and regenerator

Design Target for Sorbent Properties

$$\begin{split} R_1 R_2 NH + CO_{2(g)} + \ H_2 O_{(phys)} \leftrightarrow \ R_1 R_2 NH_2^+ + HCO_3^- \\ \\ 2R_1 R_2 NH + CO_{2(g)} \leftrightarrow \ R_1 R_2 NH_2^+ + \ R_1 R_2 NCO_2^- \end{split}$$

Rate constant expression

Carbamate formation $k_2 = A_2 T \exp\left(-\frac{E_2}{RT}\right)$ Bicarbonate formation $k_3 = A_3 T \exp\left(-\frac{E_3}{RT}\right)$

R₁R₂NH Properties

- ΔS_i reaction entropy
- ΔH_i reaction enthaply
- E_i activation energy
- A_i frequency factor

- Substituted amines
- Mixtures of amines
- Structure of solid sorbents

Heat of Reaction ΔH_i

- High heat of adsorption
 - Higher working capacity

- Low heat of adsorption
 - Reduced energy requirement
- Focus on sorbents with either a high or low heat of adsorption is not sufficient.
 - The operating parameters of the process and the interaction with the power plant should be taken into account.

 These parameters have nonlinear interactions since the reactions are linked. Sensitivity analysis on single parameter is not enough to provide comprehensive optimization.

$$R_1R_2NH + CO_{2(g)} + H_2O_{(phys)} \leftrightarrow R_1R_2NH_2^+ + HCO_3^-$$
$$2R_1R_2NH + CO_{2(g)} \leftrightarrow R_1R_2NH_2^+ + R_1R_2NCO_2^-$$

$$K_i = \frac{\exp\left(\frac{\Delta S_i}{R}\right)\exp\left(\frac{-\Delta H_i}{RT}\right)}{P}$$

• Reaction parameters are optimized simultaneously

Sorbent Optimization

Objective

min Cost of Electricity (COE)

Decision Variables

Design and Operating variables + Reactivity Variables x'

Constraints

The CO₂ capture system model (Aspen Custom Modeler) Cost Calculation (Spreadsheet or ACM) CO_2 capture rate $\ge 90\%$ $x'_{min} \le x' \le x'_{max}$

NETL-32D vs Hypothetical Sorbent

Reactivity Variables	Unit	NETL-32D	Hypothetical Sorbent 1	Hypothetical Sorbent 2
ΔH_2 (Heat of reaction in bicarbonate formation)	J/mol	-79,079	-74,710	-62,368
ΔH_3 (Heat of reaction in carbamate formation)	J/mol	-109,691	-73,192	-85,940
ΔS_2 (Reaction entropy of bicarbonate formation)	J/mol/K	-216.24	-233.18	-147.13
ΔS_3 (Reaction entropy of carbamate formation)	J/mol/K	-281.26	-198.97	-235*
E ₂ (Activation energy of bicarbonate formation)	J/mol	83,174	83,174	28,000 [*]

Steam usage for regeneration	10 ² tonne/hr	6.88	5.24	5.73
Bicarbonate delta loading	mol/kg	0.00	0.00	0.59
Carbamate delta loading	mol/kg	1.44	1.21	1.07
Total delta loading (Working capacity)	mol/kg	1.44	1.21	1.66
Total sorbent circulation rate	10 ³ tonne/hr	7.41	8.81	6.43

Decrease in Cost of Electricity from base case	%	Base case	5.5	8.4

* The value is on the lower bound of this decision variable.

Conclusion

- A balance between bicarbonate and carbamate formation is required.
 - Reason: higher working capacity \rightarrow lower capital costs
 - Current challenge: improve the kinetics of bicarbonate formation
- Heats of reaction are vital in balancing regeneration energies and sorbent loading.
 - High heats of reaction result in increase in working capacity.
 - Low heats of reaction lead to reduction in regeneration energies.
 - Optimal values vary and depend on other decision variables subject to practical limitations.

• Future work

- More sorbent properties taken into consideration: particle diameter, particle density, etc.
- Collaborate with experimental sorbent developers to tune reactivity

It's All About a Clean, Affordable Energy Future

For More Information, Contact NETL

the ENERGY lab

Delivering Yesterday and Preparing for Tomorrow

