
Trust region methods for 
optimization with reduced order 
models embedded in chemical 

process models

John P. Eason and Lorenz T. Biegler
Carnegie Mellon University

ISMP 2015
17 July 2015



Chemical process optimization

2

When developing new chemical processes, 
most operations are well understood (accurate, open models)

New technologies may require simulation (e.g. CFD)

This leads to grey-box constraints in optimization



Introduction

• We will consider problems of the following form: 

where                          is a “simulation function,” i.e.  
expensive, possibly with derivatives unavailable

Note: In our applications of interest, 
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Methods

• In the engineering literature, common approach is 
to build a reduced model (RM)

• Neural networks, Kriging interpolation, Polynomial 
regression

• Not guaranteed to find optima of true problem
• To get convergence properties, use ideas from 

derivative free optimization
• RM  ~ model function from DFO literature

• Model-based methods allow us to use the derivative 
information from the open model
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Evaluate f(x0+s)  and check if 
sufficiently reduced from f(x0) 

If no improvement! Shrink trust 
region ∆0

Trust region methods
• Build RMs that we “trust” in a local region

• Satisfy certain condition on accuracy

• Use RM, m0(s), to generate a step s
• Adaptively adjust based on accuracy of the step

• Guaranteed convergence
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• Build RMs that we “trust” in a local region
• Satisfy certain condition on accuracy

• Use RM to generate a step s
• Adaptively adjust based on accuracy of the step

• Guaranteed convergence

Evaluate f(x0+s) 

Sufficiently decreased objective

Trust region methods
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New step  s within smaller trust region
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Conditions on reduced models

• The key to convergence is the fully linear property:
there exist finite       and      such that for all iterations k,  

• As trust region vanishes, function values and 
gradients approach original model

• Any type of RM may be used satisfying this 
property
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Handling constraints

• We will use a trust region filter method

with extension to derivative free optimization:

• General NLP subproblems rather than QP

Fletcher, R., Gould, N. I., Leyffer, S., Toint, P. L., & Wächter, A. (2002). 
Global convergence of a trust-region SQP-filter algorithm for general 
nonlinear programming. SIAM Journal on Optimization, 13(3), 635-659.

Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to 
derivative-free optimization. SIAM.
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• Introduce new variables y to isolate the 
complicating constraints

• Infeasibility measures: 

A quick reformulation
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will be approximated
by RM 



Generating a trial step

• Need to improve both feasibility and objective
• Separate into normal and tangential subproblems
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Trust 
region RM predicted feasibility



Normal step

• Find a nearby feasible point
• If predicted feasibility is too far, go to 

restoration phase
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RM predicted feasibility

We require:



Tangential step

• Minimize objective, 
do not increase
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RM predicted feasibility

• Satisfy fraction of Cauchy decrease condition



RM predicted feasible 
flowsheet

Total trial step

• The proposed step for iteration k:
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• We’ve generated a step where we’ve reduced 

and also improved the objective function f(z)
• Now evaluate d(x) and determine whether the RM 

solution actually made progress in reducing

True feasibility, θ(z) = 0



Filter method
• Store               at allowed 

iterates
• If unacceptable to filter, 

decrease trust region
• If switching condition

is satisfied, possibly increase 
trust region
• Else, adjust trust region by 

ratio test on 
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OR

Fletcher et al., SIAM J. Optim, 13, 3, (2002) 



Restoration

• If either of the following hold, then call restoration
a)  

b)  

• Restoration must return a new point          such that 
a)   Restoration is not called at iterate k+1

b)  is acceptable to 

• Improving feasibility will satisfy these conditions
• We use tailored algorithms for chemical process 

simulations to converge constraints in restoration.
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Initialize

Build FL model

Solve normal subproblem

Restoration?
Find new point 

with lower θ(zk+1) 
k = k+1

χ < ξΔk ?Decrease Δk

Solve tangential subproblem

Filter Check
zk+1 = zk + sk

Increase TR radius
k = k+1

Decrease TR radius
zk+1 = zk

zk+1 = zk + sk

Ratio test on θ(zk+1) 
to increase, 
decrease, or 

maintain radius

Y

Y

N

f - type step θ - type step

Unacceptable to filter

k = k+1

N

Criticality step



Convergence Properties
• Standard assumptions (Lipschitz functions etc.)
• Exact derivatives: Proof based on Fletcher et al (2002). 
• Derivative free: extended using analysis from Conn, 

Scheinberg and Vicente (2010).
• A couple key differences:

• Trust region must go to zero
• Criticality measure

• Result:  global liminf convergence to 1st order KKT point
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Williams-Otto process
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• Simple flowsheet optimization problem
• Reactor is treated as black box model

Reactor
(RM)



Results

• Sometimes the derivatives of d(x) are available
• We can use a (slightly modified) version of the 

algorithm to reduce the simulation calls
• Subproblems exploit the cheap derivatives of the closed-

form portions of the model
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Oxycombustion steam cycle
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Case Studies: Air-fired Steam Cycle
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maximize Thermal Efficiency
s.t. Steam cycle connectivity

Heat exchanger model
Pump model
Fixed isentropic efficiency turbine model
Hybrid boiler model with fixed fuel rate
Heat integration model
Steam thermodynamics Using trust region method

Solved in GAMS 24.2.1 with CONOPT 3
Trust region algorithm in MATLAB R2013a
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• Gross electrical efficiency: 46.04% (HHV)
• Optimized steam extraction and feed water heating
• Ongoing work: assumption refinement

Case Studies: Air-fired Steam Cycle

Solution time: 167.1 minutes

Total boiler simulations: 247 (run on 4 cores)

HP turbines work 126.1 MW

IP turbines work 309.7 MW

LP turbines work 347.4 MW

Fuel rate (HHV) 1325.5 MW

Steam exit temperature 863 K

Steam exit pressure 350 bar



Conclusions
• A trust region filter method is presented for integrating 

grey box constraints in larger NLPs
• Promising performance on some chemical process 

applications
• Future work:

• Improved RM management – Can we do better than finite 
differences?  (quadratic updates?)

• Benchmark algorithm with more examples

Thanks to : Alex Dowling, Jinliang Ma
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"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof."



Case Study: Oxycombustion Steam Cycle
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maximize Thermal Efficiency
s.t. Steam cycle connectivity

Heat exchanger model
Pump model
Fixed isentropic efficiency turbine model
Hybrid boiler model with fixed fuel rate
Heat integration model
Steam thermodynamics
Pollution control models

Using trust region method

Solved in GAMS 24.2.1 with CONOPT 3
Trust region algorithm in MATLAB R2013a
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• Gross electrical efficiency: ????% (HHV)
• Optimized steam extraction, recycle strategy

Case Study: Oxycombustion Steam Cycle

Solution time:

HP turbines work

IP turbines work

LP turbines work

Fuel rate (HHV)

Steam exit temperature

Steam exit pressure

FEGT
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