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Motivation 
Develop framework for full oxycombustion 
power plant optimization 

– Minimize cost of electricity with carbon capture 
– Comparison against mature technologies 

2 

Oxycombustion Power Plant 
1. Air Separation Unit 
2. Boiler 
3. Steam Turbines 
4. Pollution Controls 
5. CO2 Compression Train 
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Methodology: Equation Oriented 
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EO Benefit: Free linear sensitivity information at optimal solution 
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Trust Region Optimization with Filter 



Cryogenic Separations 

• Minimized ASU specific 
energy  
– match industry designs, 

beats academic studies 
• Investigated CPU 

energy/area tradeoffs 
• Model structure will allow 

heat integration between 
subsystems 
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Air Separation Unit 
O2/N2 

CO2 Processing Unit 
CO2/O2, N2, Ar 

See companion presentations (627b) and (346a) 
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Trust Region Optimization with Filter 
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Pinch Based Heat Integration 

8 

Te
m

pe
ra

tu
re

 

Heat Qw 
Cold Utility 

Qs 
Hot Utility 

Hot Composite 
Curve 

Cold Composite 
Curve 

Hohmann, E.C. (1971). Optimum Networks for Heat Exchangers. PhD Thesis, University of So. Cal. 
Linnhoff, B. (1993). Pinch analysis – A state-of-the-art overview. Trans. IChemE., 71(A), 503. 

Aggregate streams in 
temperature intervals where 
heating/cooling is required  
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Hot Composite 
Curve 

Cold Composite 
Curve 

Pinch point 

Hohmann, E.C. (1971). Optimum Networks for Heat Exchangers. PhD Thesis, University of So. Cal. 
Linnhoff, B. (1993). Pinch analysis – A state-of-the-art overview. Trans. IChemE., 71(A), 503. 

Pinch Based Heat Integration 

Heat 

Shift curves horizontally 
until ΔTmin is limiting  

Minimum utilities 

But composite curves 
depend on the stream 

data! 

Flowsheet 
Optimization 

Heat 
Integration 



Heat Integration Model 
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Pinch candidates 
 
Available heating and 
cooling above pinch 
 
Utility calculations 

Flowsheet 
Optimization 

Heat 
Integration 

Duran, M. A., & Grossmann, I. E. (1986). Simultaneous optimization and heat 
integration of chemical processes. AIChE Journal, 32(1), 123–138. 



Steam Cycle Superstructure 
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Steam Cycle & Heat Integration 
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Steam Cycle & Heat Integration 
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Steam Cycle & Heat Integration 
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Steam Cycle & Heat Integration 
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Steam Cycle & Heat Integration 
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Trust Region Optimization with Filter 
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Detailed Boiler Models 

Oxycombustion boilers are drastically different than air-fired boilers. 

• Economics of the power 
generation process depend 
strongly on optimized boiler 
performance 
 

• Radiative heat transfer dominates 
• O2 and CO2 different properties 

than air 
 

• Need detailed first principles 
model 

Traditional CFD (3D) 

CPU time: 
Several weeks 



Hybrid 1D/3D Model 

• 1D gas phases zonal model 
– Flow properties 
– Char reaction kinetics 
– Particle tracking 

• 3D radiative heat transfer 
calculations 
– Solved using discrete 

ordinate method 
– Absorption efficiency based 

on Mie theory 
• Run time: 72 CPU-seconds 
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Ma, J., Dowling, A., Eason, J., Biegler, L., & Miller, D. (2014). Development of First Principle Boiler Model and Its 
Reduced Order Model for the Optimization of Oxy-combustion Power Generation System. In 39th International 
Technical Conference on Clean Coal & Fuel Systems. 
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Model Validation 
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Air-Firing Oxy-Firing 

Unit Hybrid 
Model 

CFD 
Model 

Error
% 

Hybrid 
Model 

CFD 
Model 

Error 
% 

Flue Gas Temp. at 
Horizontal Nose K 1679 1674 0.3% 1628 1656 1.7% 
Unburned Carbon wt % 0.80 1.70 0.53 1.10 
Carbon Burnout wt % 99.86 99.70 0.2% 99.90 99.80 0.1% 
Heat Loss to 
Enclosure Wall * W 4.108x108 4.36x108 5.8% 3.93x108 4.03x108 2.5% 
Heat Loss to 
Platen SH Wall W 1.018x108 1.02x108 0.2% 9.89x107 1.09x108 9.2% 

* CFD models include a section of enclosure wall above nose 
  CFD data from NETL/Reaction Engineering International study 

Air- 
Firing 

Oxy- 
Firing 



Methodology: Equation Oriented 
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Trust Region Optimization with Filter 

Framework for EO Flowsheet Optimization 



Evaluate                      . 
 
 
 
No improvement! Shrink trust 
region  

Trust region methods 
• Build surrogate models that we “trust” in a local region 

– Satisfy certain conditions on accuracy 
• Optimize within the trust region 
• Adaptively adjust surrogate and trust region size 

– Guaranteed convergence 
• Use filter method to extend to flowsheets with surrogates 
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s.t. 
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Evaluate                      . 
 
 
 
 
Sufficiently decreased the objective 

Trust region methods 
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New step      within smaller trust region 

• Build surrogate models that we “trust” in a local region 
– Satisfy certain conditions on accuracy 

• Optimize within the trust region 
• Adaptively adjust surrogate and trust region size 

– Guaranteed convergence 
• Use filter method to extend to flowsheets with surrogates 

See companion poster (566b) for details 
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Steam Thermodynamics 
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S = f(T,P) ? 

S 𝑇𝑇,𝑃𝑃 ≌ 𝜏𝜏 𝑇𝑇 − 𝑇𝑇0 + 𝜌𝜌 𝑃𝑃 − 𝑃𝑃0 + 𝑆𝑆0 

c 

IAPWS IF-97 
standard 

Use linear surrogate 
models in trust 

region framework 



Case Studies: Air-fired Steam Cycle 
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• Simultaneous steam cycle & boiler optimization 
 

• Boiler design variables 
• Fixed coal feed rate (match CFD case) 
• Primary air temperature & flowrate 
• Secondary/over-fired air temperature 
• Secondary air flowrate 
• Overfire air flowrate 
• Water wall temperature 

 
• Future: 

• Boiler geometry 
• Gas composition (for oxycombustion) 
 

Presenter
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Case Studies: Air-fired Steam Cycle 
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maximize Thermal Efficiency 
s.t. Steam cycle connectivity 
 Heat exchanger model 
 Pump model 
 Fixed isentropic efficiency turbine model 
 Hybrid boiler model with fixed fuel rate 
 Heat integration model 
 Steam thermodynamics 

 

Using trust region method 

Solved in GAMS 24.2.1 with CONOPT 3 
Trust region algorithm in MATLAB R2013a 

Presenter
Presentation Notes
Add slide with detailed assumptions
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• Gross electrical efficiency: 46.04% (HHV) 
• Optimized steam extraction and feed water heating 
• Ongoing work: assumption refinement 

Case Studies: Air-fired Steam Cycle 

Solution time: 167.1 minutes 
Total boiler simulations: 247 (run on 4 cores) 

HP turbines work 126.1 MW 
IP turbines work 309.7 MW 
LP turbines work 347.4 MW 
Fuel rate (HHV) 1325.5 MW 
Steam exit temperature 863 K 
Steam exit pressure 350 bar 



Conclusions 
• Developing EO framework for full 

oxycombustion power plant optimization 
– General structure, extends easily to other 

emerging energy technologies 
 

• Trust region framework embeds steam 
table thermodynamics and surrogate 
boiler model into equation-based 
optimization problems 
– Guaranteed accuracy 

 

• Future work will include investigation of 
– Heat integration and sizing trade-offs 
– Optimization of firing conditions and CO2 

recycle strategy 
– Full optimization of oxycombustion 

process 
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Trust Region Framework 

• Desire mathematical guarantees regarding the 
optimal of the “full detail” model 
 

• Restricts optimizer step size to within trust region 
 

• Adjust trust region size based on local model 
accuracy 
 

• Use filter method to simultaneously optimize 
objective function and converge equality constraints 
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Agarwal, A., & Biegler, L. T. (2013) A trust-region framework for constrained 
optimization using reduced order modeling. Optimization and Engineering, 14(1), 3–35.  
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