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Motivation 

Develop framework for full oxycombustion 
power plant optimization 

– Estimate cost of electricity with carbon capture 
– Balance trade-offs between systems 
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Oxycombustion Power Plant 
1. Air Separation Unit 
2. Boiler 
3. Steam Turbines 
4. Pollution Controls 
5. CO2 Compression Train 
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Methodology: Equation Oriented 
– High fidelity models (approaching first principles) 

 
– Accurate derivative information  efficient large 

scale optimization algorithms (100,000+ variables) 
 

– Consider integer decisions (MINLP) 
 

– Low cost sensitivity information 
 

– Optimality guarantees 
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Motivation 

Develop framework for full oxycombustion 
power plant optimization 

– Estimate cost of electricity with carbon capture 
– Balance trade-offs between systems 
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Start with cryogenic ASU 



Cryogenic Air Separation 

Boiling Points @ 1 atm 
Oxygen: -183 °C 
Argon: -185.7 °C 
Nitrogen:  -195.8 °C 
 

Multicomponent 
distillation with tight heat 

integration 
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Photo from wikipedia.org 

Low pressure 
section 

High pressure 
section 

Challenging to systematically optimize in AspenPlus. 



Double Column Configuration 
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ASU Superstructure 

• Many different column 
configurations realizable 

 
 
• NLP optimizer selects the 

best configuration 
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Optimization Formulation 

Note: Upper and lower bounds not shown above are considered for 
many variables including stream/equipment temperatures and pressures. 8 



Cubic Equation of State 

Z 
Z 

Ex: Peng-Robinson 
Kamath, R. S., Biegler, L. T., & Grossmann, I. E. (2010). An equation-oriented 
approach for handling thermodynamics based on cubic equation of state in process 
optimization. Computers & Chemical Engineering, 34(12), 2085–2096. 

9 

Mole balance 

Energy Balance 
Equilibrium 



Cascade Models 

Group Method MESH Model with Bypass 
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Simpler approximation 

Complex & rigorous 
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Cascade Models 

11 

• Continuous number of ideal 
stages 
 

• Based on the work of Kremser 
and Edmister 
 

• Modified for general 
distillation by Kamath 

• New distillation model 
 

• Mass, Equilibrium, Summation 
and Heat equations 
 

• Model discrete trays 
 

• Bypass allows for tray 
(de)activation with only 
continuous variables 

Kamath, Grossmann & Biegler (2010). Aggregate models based on improved group 
methods for simulation and optimization of distillation systems. Computers & 
Chemical Engineering. 
 

Group Method MESH Model with Bypass 
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Yeomans, H., & Grossmann, I. E. (2000). Disjunctive Programming Models 
for the Optimal Design of Distillation Columns and Separation Sequences. 
Industrial & Engineering Chemistry Research, 39(6), 1637–1648. 

Tray i 

Tray i-1 

Tray i+1 

MESH with Bypass 

Yeomans & Grossmann (2000) 
– Disjunctive model to 

(de)activate trays 
– Logic based solution algorithm 

 



MESH with Bypass 

Yeomans & Grossmann (2000) 
– Disjunctive model to 

(de)activate trays 
– Logic based solution algorithm 

 
New model 

– Use generic NLP solver 
– Equilibrium calculated with Vi-1 

and Li+1 to avoid degeneracies 
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Pinch Based Heat Integration 
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Curve 

Cold Composite 
Curve 

Shift curves horizontally 
until ΔTmin is limiting 

Flowsheet 
Optimization 

Heat 
Integration 

Hohmann, E.C. (1971). Optimum Networks for Heat Exchangers. PhD Thesis, University of So. Cal. 
Linnhoff, B. (1993). Pinch analysis – A state-of-the-art overview. Trans. IChemE., 71(A), 503. 



Pinch Based Heat Integration 
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Optimization 
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Hohmann, E.C. (1971). Optimum Networks for Heat Exchangers. PhD Thesis, University of So. Cal. 
Linnhoff, B. (1993). Pinch analysis – A state-of-the-art overview. Trans. IChemE., 71(A), 503. 



Heat Integration Model 
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Pinch candidates 
 
Available heating and 
cooling above pinch 
 
Utility calculations 

Flowsheet 
Optimization 

Heat 
Integration 
Duran, M. A., & Grossmann, I. E. (1986). Simultaneous optimization and heat 
integration of chemical processes. AIChE Journal, 32(1), 123–138. 



Heat Exchanger Decomposition 
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Implementation Details 

• Non-convex problem 
– 12,000 variables & 

constraints 
 

• Automated initialization 
– Simple  complex models 
– Custom multistart procedure 

 
• Solved using CONOPT3 in 

GAMS 
– 12 CPU minutes on Intel i7 

desktop for one initial point 
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Initialization Procedure 
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Ideal Thermo &  
Shortcut Cascade 

CEOS Thermo & 
Shortcut Cascade 

CEOS Thermo & 
MESH Cascade 

Decompose Heat 
Exchange Units & 

Reoptimize 

Repeat with different 
combinations of initial 

values and bounds 
 

Sort local solutions by 
final obj. function value 



1.80 mol/t 
(.78, 0.21, 0.01) 

300 K, 3 bar 
6 stages 

30 stages 

O2 enriched 
recycle 

81.4 K 
90% liquid 

N2 enriched 
reflux 

88.7 K liquid 

0.20 mol/t 
(.78, 0.21, 0.01) 
333 K, 40 bar 

1.58 mol/t 
(.978, .013, .009) 
298 K, 1.01 bar 

0.42 mol/t 
(.036, .950, .014) 
315 K, 1.01 bar 

Mole fractions 
(N2, O2, Ar) 

Optimal 
ASU 
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Validation with Aspen Plus® 
Specifications: 
• Peng-Robinson thermodynamics model 
• R2 feed conditions match GAMS results 
• R2 outlet: 74.7% vapor 
• Pressure: 1.053 bar 

Stream Prop GAMS Aspen 

S18 
(vapor) 

N2 11.03% 11.05% 
O2 86.33% 86.31% 
Ar 2.64% 2.64% 

S15 
(liquid) 

N2 3.07% 3.09% 
O2 95.00% 94.96% 
Ar 1.93% 1.95% 

Temp. 89.42 K 89.39 K 

Discrepancy likely due to mismatch with input data for 
thermodynamic models 21 
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Heat Integration Results 

Heat integrated 
separately 

ΔTmin = 0.4 K 

Hot Curve 

Cold 
Curve 

Pinch 
Points 

ΔTmin = 1.5 K 
0.185 kWh/kg O2 product (86% eff. compressors) 
 

Industrial Optimized Design (NETL, 2010) 
0.179 kWh/kg O2 product (possible 86% eff.)  22 

Presenter
Presentation Notes
NETL Oxycombustion Report (2010)
	Industry optimized ASU	
	0.179 kWh/kg O2	
	86% ??? eff. comp. vs 0.178 (us)

Fu & Gundersen. Energy. (2012)
	Dual-reboiler ASU
	0.206 kWh/kg O2
	≈ 79.5% eff. Comp vs. 0.193 (us)
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Optimized: 
Low Energy 

Optimized: 
Low Capital 

Am. Air Liquide 
NETL (2010) 

100% efficient 
compressors 



O2 Purity Sensitivity 
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y = 0.3338x - 0.1579 
R² = 0.9975 
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100% efficient compressors 

KKT Multiplier 
0.36 kWh/kg/mole frac. 



Future Work 

25 

Oxycombustion Power Plant 
1. Air Separation Unit 
2. Boiler 
3. Steam Turbines 
4. Pollution Controls 
5. CO2 Compression Train 

1 2 
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Optimize trade-offs across systems in 
oxycombustion power plant 



Conclusions 

Optimized ASU with equation-based model: 
– Cubic equation of state & simultaneous heat integration 

 

– New distillation model: MESH with bypass 
 

– Pure nonlinear program – no discrete variables 
 

– Comparison with NETL/industry report 
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Heat Integration Reformulation 
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Consider contribution of single unit hgu 
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