Process Systems Engineering

Design of Air Separation Units for Advanced Combustion via Equation Based Optimization

Alexander W. Dowling

Lorenz T. Biegler Carnegie Mellon University

AIChE Annual Meeting November 4th, 2013

Motivation

Develop framework for full oxycombustion power plant optimization

- Estimate *cost of electricity* with carbon capture
- Balance trade-offs between systems

Oxycombustion Power Plant

- 1. Air Separation Unit
- 2. Boiler
- 3. Steam Turbines
- 4. Pollution Controls
- 5. CO₂ Compression Train

- High fidelity models (approaching first principles)

- Accurate derivative information \rightarrow efficient large scale optimization algorithms (100,000+ variables)
- Consider integer decisions (MINLP)
- Low cost sensitivity information
- Optimality guarantees

Motivation

Develop framework for full oxycombustion power plant optimization

- Estimate cost of electricity with carbon capture
- Balance trade-offs between systems

Cryogenic Air Separation

Low pressure section

Boiling Points @ 1 atm Oxygen: -183 °C Argon: -185.7 °C

Nitrogen: -195.8 °C

Multicomponent distillation with tight heat integration

Photo from wikipedia.org

High pressure section

Challenging to systematically optimize in AspenPlus.

Double Column Configuration

ASU Superstructure

• <u>Many</u> different column configurations realizable

• NLP optimizer selects the best configuration

 $\begin{array}{l} \min \\ & \text{ASU Compression Energy} \\ & (\text{kWh / kg O}_2 \text{ product}) \end{array}$

s.t. Flowsheet Superstructure \rightarrow Thermodynamics Module Unit Operation Models \rightarrow Cascade Model \leftarrow \rightarrow Heat Integration \leftarrow O_2 product purity ≥ 95 mol%

Note: **Upper and lower bounds not shown above** are considered for many variables including stream/equipment temperatures and pressures.

Cubic Equation of State

Kamath, R. S., Biegler, L. T., & Grossmann, I. E. (2010). An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. *Computers & Chemical Engineering*, *34*(12), 2085–2096.

Ex: Peng-Robinson

 $Z^{3} - (1 + B - uB)Z^{2} + (A + wB^{2} - uB - uB^{2})Z - AB - wB^{2} - wB^{3} = 0$

Cascade Models

Complex & rigorous

Cascade Models

Group Method

- **Continuous number** of ideal stages
- Based on the work of Kremser and Edmister
- Modified for general distillation by Kamath

MESH Model with Bypass

- New distillation model
- Mass, Equilibrium, Summation and Heat equations
- Model discrete trays
- Bypass allows for tray (de)activation with only continuous variables

Kamath, Grossmann & Biegler (2010). Aggregate models based on improved group methods for simulation and optimization of distillation systems. *Computers* & *Chemical Engineering*.

MESH with Bypass

Yeomans & Grossmann (2000)

- Disjunctive model to (de)activate trays
- Logic based solution algorithm

Yeomans, H., & Grossmann, I. E. (2000). Disjunctive Programming Models for the Optimal Design of Distillation Columns and Separation Sequences. *Industrial & Engineering Chemistry Research*, 39(6), 1637–1648.

MESH with Bypass

Yeomans & Grossmann (2000)

- Disjunctive model to (de)activate trays
- Logic based solution algorithm

New model

- Use generic NLP solver
- Equilibrium calculated with V_{i-1} and L_{i+1} to avoid degeneracies

Hohmann, E.C. (1971). *Optimum Networks for Heat Exchangers*. PhD Thesis, University of So. Cal. Linnhoff, B. (1993). Pinch analysis – A state-of-the-art overview. *Trans. IChemE.*, **71**(*A*), 503.

Hohmann, E.C. (1971). *Optimum Networks for Heat Exchangers*. PhD Thesis, University of So. Cal. Linnhoff, B. (1993). Pinch analysis – A state-of-the-art overview. *Trans. IChemE.*, **71**(*A*), 503.

Heat Integration Model

Pinch candidates

Available heating and cooling above pinch

Utility calculations

Flowsheet Optimization I Heat Integration

16

Duran, M. A., & Grossmann, I. E. (1986). Simultaneous optimization and heat integration of chemical processes. *AIChE Journal*, *32*(1), 123–138.

Heat Exchanger Decomposition

Implementation Details

min

- Non-convex problem

 12,000 variables & constraints
- Automated initialization
 - Simple \rightarrow complex models
 - Custom multistart procedure
- Solved using **CONOPT3** in GAMS
 - 12 CPU minutes on Intel i7 desktop for one initial point

ASU Compression Energy (kWh / kg O₂ product)

- s.t. Flowsheet Superstructure Thermodynamics Module Unit Operation Models Cascade Model Heat Integration
 - O_2 product purity $\geq 95 \text{ mol}\%$

Initialization Procedure

Validation with Aspen Plus®

Specifications:

- Peng-Robinson thermodynamics model
- R2 feed conditions match GAMS results
- R2 outlet: 74.7% vapor
- Pressure: 1.053 bar

Stream	Prop	GAMS	Aspen
S18 (vapor)	N_2	11.03%	11.05%
	O_2	86.33%	86.31%
	Ar	2.64%	2.64%
S15 (liquid)	N_2	3.07%	3.09%
	O ₂	95.00%	94.96%
	Ar	1.93%	1.95%
	Temp.	89.42 K	89.39 K

Discrepancy likely due to mismatch with input data for thermodynamic models

0.185 kWh/kg O₂ product (86% eff. compressors)

Industrial Optimized Design (NETL, 2010) 0.179 kWh/kg O₂ product (possible 86% eff.)

O₂ Purity Sensitivity

100% efficient compressors

Future Work

Oxycombustion Power Plant

- 1. Air Separation Unit
- 2. Boiler
- 3. Steam Turbines
- 4. Pollution Controls
- 5. CO₂ Compression Train

Optimize trade-offs across systems in oxycombustion power plant

Optimized ASU with equation-based model:

- Cubic equation of state & simultaneous heat integration
- New distillation model: MESH with bypass
- Pure nonlinear program no discrete variables
- Comparison with NETL/industry report

Acknowledgements:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

eat Integration Reformulation

$$QA_{C}^{p} = \sum_{j \in \{Cold\}} FCp_{j}[\widetilde{\max}(T_{j}^{out} - T^{p} + \Delta T_{min}) - \widetilde{\max}(T_{j}^{in} - T^{p} + \Delta T_{min})]$$

Consider contribution of single unit *hgu*

Integrated Heat from Heating Unit hgu

$$Q_{s^{p}}^{Ac} = \sum_{hgu^{1}} FCp_{hgu^{1}} [\max(T_{hgu^{1}}^{out} - TP_{s^{p}} + \Delta T_{min}) - \max(T_{hgu^{1}}^{in} - TP_{s^{p}} + \Delta T_{min})]$$

$$+\sum_{hgu^2} Q^{in}_{cgu^2} + \sum_{hgu^3} 0$$
 27