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Oxycombustion Flowsheet 
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1. Air Separation Unit 
2. Boiler 
3. Steam Turbine 

4. Pollution Controls 
5. CO2 Compression Train 
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Project Objective 

Develop an equation oriented framework to 
optimize an entire coal oxycombustion 
flowsheet. 
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Project Summary 
Objective: Develop an equation oriented 

framework to optimize an entire coal 
oxycombustion flowsheet. 

 

• Characterize potential of coal oxycombustion 
technology for carbon capture 
  

• Explore complex design trade-offs in highly coupled 
flowsheet 
 

• Demonstrate equation oriented methods on an 
industrial size flowsheet 
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Outline 
1. Cryogenic Air Separation Model 

 
2. Thermodynamic Model and Phase Detection 

 
3. Heat Integration 

 
4. Optimization Results 

 
5. Future Work and Conclusions  
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Cryogenic Air Separation 

Boiling Points @ 1 atm 
Oxygen: -183 °C 
Argon: -185.7 °C 
Nitrogen:  -195.8 °C 
 

Multicomponent 
distillation with tight heat 

integration 
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Low Pressure Column 
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Flash Model 
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Flash Model 
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Units Similar to Flash 

• Partial Reboiler 
– Not adiabatic 

 
• Total Condenser 

– No exit vapor stream  →  no equilibrium equation 
– Not adiabatic 

 
• Valve 

–   
– Entropy inequality (optional) 
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Cascade Model 
• Group method 

– Continuous number of ideal stages 
– Based on work of Kremser and Edminster 
– Requires specification of stripping and  

absorbing section 
 

• Modifications for distillation: 
– Exit streams at dew/bubble point 
– Decrease vapor at bottom = increase liquid at top 
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Kamath, Grossmann & Biegler (2010). Aggregate models based on improved group 
methods for simulation and optimization of distillation systems. Computers & 
Chemical Engineering. 
 



Cascade Model 
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Cascade Model 
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Thermodynamic Model 

• Cubic Equation of State (CEOS) 
 
 
 
 

• Properties from departure functions 
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Root Selection Constraints 
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Phase CEOS 1st Derivative 2nd Derivative 

Liquid 

Vapor 

Up to 3 
Root?!? 

Kamath, Grossmann & Biegler (2010). An equation-oriented approach for 
handling thermodynamics based on cubic equation of state in process 
optimization. Computers & Chemical Engineering. 



Phase Disappearance 

Idea: If a phase disappears, the thermodynamics 
must also be relaxed. 
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Phase Disappearance 
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Pinch Location Heat Integration 

• No utility heating or 
cooling 
 

• Constant heat capacity 
assumed for each unit 
 

• Require 2 phase flow 
for select intermediate 
streams 
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Heat Integration Model 
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Based on work of Duran & Grossmann (1986) 



Optimization Problem 
Minimize Specific Compression Energy 

 

   s.t. O2 purity ≥ 90 mol % 
    Unit Models 
    Connectivity Equations 
    Variable Bounds 
 

Variables / Equations:  2,660  /  2,993     
Solver:    CONOPT3 in GAMS 
Solution Time:   87.9 seconds 
      (with init: 163.4 s) 
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Presenter
Presentation Notes
MassBal: 0.278 second
ASU_Simple4: 14.644 seconds
InitCEOS2: 0.531 seconds
InitCEOS2: 0.249 seconds
ASU_CEOS9: 59.787 seconds
ASU_CEOS9: 87.819 seconds




Optimization Results 
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135 K 

80 K 
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36.6 
Thr. 

Stages 

14.5 
Thr. 

Stages 

0.482 mol/time 
41.3 bar,  300 K 

78% N2, 21% O2, 1% Ar  

1.518 mol/time 
1.3 bar,  300 K 

78% N2, 21% O2, 1% Ar  
0.394 mol/time 
1.13 bar, 298 K 

7.1% N2, 90.0% O2, 2.9% Ar  

1.225 mol/time 
1.13 bar, 298 K 

94.4% N2, 5.3% O2, 0.3% Ar  

0.381 mol/time 
1.01 bar, 298 K 

98.8% N2, trace O2, 1.2% Ar 

130 K 

77.6 K 

0.199 kWh / kg O2 

0.102 mol/time 
trace N2, 99.9% O2, 0.1% Ar  

80 K 

22.7 bar 

1.13 bar 



Optimization Results 
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O2 purity: 90.0 mol% 
Air Compressor: 0.199 kWh / kg O2 
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Future ASU Work 

• Compare results with Aspen® 
– Adjust thermodynamic coefficients as needed 
– Further validate group method cascade model 

 
• Pareto analysis: energy vs. O2 purity 

 
• Add capital costs to objective function 

30 



Future Flowsheet Work 

• Integrate ASU model with remaining 
flowsheet sections 
 

•  Explore potential heat integration synergies 
– ASU with post combustion cryogenics 
– ASU with compression train 
– Compression train with boiler 
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Conclusions 

Optimized ASU with equation-based model: 
– Cubic equation of state with accurate derivatives 
– Pinch location heat integration 
– Pure nonlinear program – no discrete variables 
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Initialization Procedure 

Solve successive optimization problems 
 

1. Mass balances only 
 

2. Simple thermo ASU w/ heat integration 
 

3. CEOS equations only (T, P, x, y, fixed) 
 

4. CEOS ASU w/ heat integration 
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