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Build a model of output variables 𝒛 as a 

function of input variables x over a specified 

interval

LEARNING PROBLEM

Independent variables:
Operating conditions, inlet 

flow properties, unit 

geometry

Dependent variables:
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc.

Process simulation or 

Experiment

𝑥 ∈ ℝ𝑘

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑘

𝑧1
𝑧2
⋮
𝑧𝑙
⋮
𝑧𝑚

𝑧 ∈ ℝ𝑚

𝑧 = 𝑓(𝑥)
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ALAMO

Automated Learning of Algebraic Models using Optimization
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Model complexity tradeoff

Kriging [Krige, 63]

Neural nets [McCulloch-Pitts, 43]

Radial basis functions [Buhman, 00]

Model complexity
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• We aim to build surrogate models that are

– Accurate
• We want to reflect the true nature of the simulation

– Simple
• Interpretable; tailored for algebraic optimization

– Generated from a minimal data set
• Reduce experimental and simulation requirements

DESIRED MODEL ATTRIBUTES
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• Goal: Identify the functional form and complexity of the 

surrogate models

• Functional form: 

– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions

Model identification
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• Step 1: Define a large set of potential basis functions

• Step 2: Model reduction

Overfitting and true error

True error

Empirical error

Complexity

E
rr

o
r

Ideal Model

OverfittingUnderfitting
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• Qualitative tradeoffs of model 

reduction methods

Model reduction techniques

Backward elimination [Oosterhof, 63] 

Forward selection [Hamaker, 62]

Stepwise regression [Efroymson, 60]

Regularized regression techniques
• Penalize the least squares objective using the magnitude of the regressors [Tibshirani, 95]

Best subset methods
• Enumerate all possible subsets
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• Balance fit (sum of square errors) with model complexity 

(number of terms in the model; denoted by p)

MODEL SELECTION CRITERIA

Corrected Akaike Information Criterion

𝐴𝐼𝐶𝑐 = 𝑁 log
1

𝑁
 

𝑖=1

𝑁
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2 + 2𝒑 +
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𝑁 − 𝒑 − 1
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 𝑖=1
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 𝜎2
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𝑁
 

𝑖=1

𝑁
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Direct optimization via miqp

• Convex metrics can be optimized directly

• Exclusion of variables modeled with big-M 

constraints

– Value of M selected using lasso based logic
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Direct optimization via CCmiqp

• Nonconvex metrics are optimized by solving a series 

of cardinality constrained MIQPs
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Model sizing

Complexity = number of terms allowed in the model

Goodness-of-fit measure

6th term was not worth the added 

complexity

Final model includes 5 terms

Some measure of 

error that is 

sensitive to 

overfitting

(AICc, BIC, Cp, …)

Solve for the best 

one-term model

Solve for the best 

two-term model
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SYNOPSIS

Model 
error

New surrogate model

Black-box 

function

Surrogate model

Data 

points

Model i Sample Points Model i+1

New sample 
point

Derivative-free optimization

In low dimensions Mixed-integer programming for best 

simple model
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• New Goal: Search the problem space for areas of model 

inconsistency or model mismatch

• More succinctly, we are trying to find points that maximizes 

the model error with respect to the independent variables

– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08]

– Derivative-free solvers work well in low-dimensional spaces

[Rios and Sahinidis, 12]

Error maximization sampling

Surrogate model
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• Goal – Compare methods on three target metrics

• Modeling methods compared

– ALAMO modeler – Proposed best subset methodology

– The LASSO – The lasso regularization

– Ordinary regression – Ordinary least-squares regression

• Sampling methods compared (over the same data set size)

– ALAMO sampler – Proposed error maximization technique

– Single LH – Single Latin hypercube (no feedback)

Computational results

Model simplicity3Data efficiency2Model accuracy1
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Fraction of problems solved

Ordinary regression

ALAMO modeler

the lasso

Ordinary regression

ALAMO modeler

the lasso

(0.005, 0.80)
80% of the problems had ≤0.5% error

70% of problems solved exactly

Normalized test error

error maximization sampling

single Latin hypercube

Model simplicity3Data efficiency2Model accuracy1
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ALAMO sampler

Single LH

ALAMO sampler

Single LH

ALAMO sampler

Single LH

Ordinary regression

ALAMO modeler

the lasso

Normalized test error

Fraction of 

problems solved

Model simplicity3Data efficiency2Model accuracy1
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more complexity than required

Results over a test set of 45 known functions treated as black boxes with bases that are available to all modeling methods.

Modeling type, Median

Model simplicity3Data efficiency2Model accuracy1
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• Expanding the scope of algebraic optimization

– Using low-complexity surrogate models to strike a balance 
between optimal decision-making and model fidelity

• Surrogate model identification

– Simple, accurate model identification – Integer 
optimization

• Error maximization sampling

– More information found per simulated data point

ALAMO remarks

New 

surroga

te 

model

Surrogat

e model
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• Post combustion carbon capture design and optimization

• Minimize increased cost of electricity [Black et al., 11]

– Subject to 90% carbon capture

Carbon capture system design

Simulations, cost models, superstructure, and surrogate models were 

developed as part of the DOE Carbon Capture Simulation Initiative
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• Discrete decisions:  How many units? Parallel trains? 
What technology used for each reactor?

• Continuous decisions: Unit geometries

• Operating conditions:  Vessel temperature and pressure, flow 
rates, 

compositions

Carbon capture system design

Surrogate models for each 

reactor and technology 

used
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Carbon Capture Reactors

RegeneratorAdsorber

Overflow
configuration

Underflow
configuration
Underflow
configuration
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Surrogate Results

underflow adsorber
overflow adsorber

overflow regenerator
underflow regenerator
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Inlet Gas Pressure Models

Model reduced from 13-14 
dimensions to 2 dimensions
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SUPERSTRUCTURE OPTIMIZATION

Mixed-integer nonlinear 

programming model

• Economic model

• Process model

• Material balances

• Hydrodynamic/Energy balances

• Reactor surrogate models

• Link between economic model 

and process model

• Binary variable constraints

• Bounds for variables

MINLP solved with 

BARON
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• ALAMO generates algebraic models that are accurate 

and simple

– Highly amenable to algebraic optimization

• Adaptive sampling allows models to be generated from a 

minimal number of function evaluations

– Very important for high cost simulations or experiments

• Surrogate models can be incorporated into larger 

superstructure optimization problems to intelligently 

design process systems

conclusions
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