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• Leverage more information than just sampled data when 
building a surrogate model 

 

MOTIVATION 

Fits the data better 

Fits the true function better 
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• Ordinary least squares regression 
– Chooses regression coefficients based on a set of data points 

 
• Generate a model for response,  

 
 

• Ordinary least squares regression problem 
 
 

OR 
 
 
 
 
 

LEAST SQUARES REGRESSION 

Optimization variables 
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• What if more information is known of a less exact nature? 
– Leverage all information available to the modeler 

 

• Explicit restrictions placed on regressors 
– Often times logical bounds on regressors can be found by inspection 

and/or analysis 
• Ex: Physical constants 

 
 

 

– Relationships between parameters can be found by inspection or 
analysis 

• Ex: Intuitive relationships 

 
 
 

CONSTRAINED REGRESSION 

P. S. Knopov and A. S. Korkhin. Regression analysis under a priori parameter restrictions. Vol. 54. Springer, 2011. 
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• Adding in explicit constraints is rather straight forward, 

ADDING EXPLICIT CONSTRAINTS 
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• What if more information is known of a less exact nature? 
– Leverage all information available to the modeler 

 

• Restrictions implied by constraints on dependent variables 
– Implied by bounds on dependent variable 

• Ex: 
 
 

 
 
 

– Implied by constraints on dependent variable 
• Ex: 

 
 
 

CONSTRAINED REGRESSION 
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• Adding in constraints implied by dependent variable bounds 
is less straight forward, 

ADDING IMPLIED CONSTRAINTS 
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• Adding in constraints implied by dependent variable bounds 
is less straight forward, 

ADDING IMPLIED CONSTRAINTS 

Semi-infinite 
programming 
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• Adding in constraints implied by dependent variable bounds 
is less straight forward, 

ADDING IMPLIED CONSTRAINTS 
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IMPLEMENTATION 

Start 

Build surrogate model 

Search for violation: 

End 
no 

yes 
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• Build an initial model 

ILLUSTRATIVE EXAMPLE 

ERROR 

Model vs. Data 

Model vs. Reality 
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• Build an initial model 
• Locate areas that violate output bounds 

ILLUSTRATIVE EXAMPLE 

ERROR 

Model vs. Data 

Model vs. Reality 

Data points 
Bounding points 



Carnegie Mellon University 13 

• Rebuild the model ensuring the output is within bounds at 
the bounding points 

ILLUSTRATIVE EXAMPLE 

ERROR 

Model vs. Data 

Model vs. Reality 

Data points 
Bounding points 
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NON STATIONARITY 

Error 
objective 

β 

Error 
objective 
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• Rebuild the model ensuring the output is within bounds at 
the bounding points 

• Search for additional violation points 

ILLUSTRATIVE EXAMPLE 

ERROR 

Model vs. Data 

Model vs. Reality 

Data points 
Bounding points 
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• Rebuild the model ensuring the output is within bounds at 
the bounding points 

• Ensure that no violation points remain 
 

ILLUSTRATIVE EXAMPLE 

ERROR 

Model vs. Data 

Model vs. Reality 

Data points 
Bounding points 
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IMPLEMENTATION 

Start 

Build surrogate model 

Search for violation: 

End 
no 

yes 
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• We will test this implementation on an existing software: 
ALAMO 
 

• ALAMO (Automated Learning of Algebraic Models for 
Optimization) 
– Iteratively sample and model black box systems as algebraic model 

that  
• Accurate 

– We want to reflect the true nature of the simulation 

• Simple 
– Low-complexity models 

 
 
 

• Generated from a minimal data set 
– Reduce experimental and simulation requirements 

 

TESTING PLATFORM 
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ALAMO 
Automated Learning of Algebraic Models for Optimization 

true 
Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Black-box function 
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ALAMO 
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Automated Learning of Algebraic Models for Optimization 
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ALAMO 
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ALAMO 

true 
Stop 

Update 
training data 

set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? Current model 

Black-box function 
Training data 

Automated Learning of Algebraic Models for Optimization 

Determining the unknown functional form 

       Step 1: Define a large set of potential basis functions 
 

 
 

Step 2: Model reduction 
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ALAMO 
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Automated Learning of Algebraic Models for Optimization 

Determining the unknown functional form 

       Step 1: Define a large set of potential basis functions 
 

 
 

Step 2: Model reduction 

Using the new method, we 
guarantee that the model 

does not violate output 
variable bounds 
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Automated Learning of Algebraic Models for Optimization 
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ALAMO 
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• Dependent variable and range 
– Fraction of CO2 remove from the gas stream 

  
 
 
 

• Independent variable and range 

SMALL EXMAPLE – CARBON CAPTURE 

CO2 rich solid outlet 

Cooling 
water 

Outlet gas Solid feed 

CO2 rich gas 
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COMPARISON – ITER 2 
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ALAMO 
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• Constrained optimization provides a new avenue to provide 
a model with a priori information 
– Include more information in your model without additional sampling 
– Reduced the sampling required for an accurate model 

 

• Ensure a more robust model by using output bounds as a 
“reality” check on the model 
 

• Future work, 
– More complex solution manifolds 

• Nonlinear constraints on regressors 
• Nonlinear feasible domain for output variables 

– Simultaneous model generation and constraints 
• Restrictions implied by constraints on multiple outputs 

– Ex: Sum-to-one constraints 

 

CONCLUSIONS 
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STANDARD BASIS FUNCTION SELECTION 

Find the model with the 
least error 
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BASIS FUNCTION SELECTION 

We will solve this model for increasing T 
until we determine a model 
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BASIS FUNCTION SELECTION 
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