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MOTIVATION 

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory 

• Simulation optimization 
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Optimize simulations or black-box processes 

PROBLEM STATEMENT 

Process 
simulation 
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1. Surrogate-based optimization of process 
simulations 
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SOLUTION STRATEGY 

Block 1: 
Simulator 

Model 
generation 

Block 2: 
Simulator 

Model 
generation 

Block 3: 
Simulator 

Model 
generation 

Surrogate Models 
Build simple and accurate 
models with a functional 

form tailored for an 
optimization framework 

Process Simulation 
Disaggregate process into 

process blocks 

Optimization Model 
Add algebraic constraints 

h(x)=0: design specs, 
heat/mass balances, and 

logic constraints 
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RECENT WORK IN CHEMICAL ENG 

Simulator Modeler Optimizer 

Full process 

Disaggregated 

Kriging Neural nets Polynomial-based 

 Michalopoulos et 
al., 2001 

 Palmer and Realff, 
2002 

 Huang et al., 2006  
 Davis and 

Ierapetriton, 2012 

 Caballero and 
Grossmann, 2008 

 Palmer and Realff, 
2002 

 Henao and 
Maravelias, 2011 
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1. Surrogate-based optimization of process 
simulations 

 

2. Surrogate model generation method 
 

3. Computational experiments 
 

4. Case studies 

OVERVIEW 

– Efficiently generate simple and accurate algebraic models 
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• Build a model of output variables z as a function of input 
variables x over a specified interval 
 
 
 

 
 

 
 

 

LEARNING PROBLEM STATEMENT 

Independent variables: 
Operating conditions, inlet flow 

properties, unit geometry 
 

Dependent variables: 
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc. 
 

Process simulation 
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• We aim to build surrogate models that are 
– Accurate 

• We want to reflect the true nature of the simulation 
 

– Simple 
• Tailored for algebraic optimization 

 
 
 
 
 

– Generated from a minimal data set 
• Reduce experimental and simulation requirements 

 

HOW TO BUILD THE SURROGATES 
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ALAMO 
Automated Learning of Algebraic Models for Optimization 
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MODEL COMPLEXITY TRADEOFF 
Kriging [Krige, 63] 

Neural nets [McCulloch-Pitts, 43]  
Radial basis functions [Buhman, 00] 

Model complexity 
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• Goal: Identify the functional form and complexity of the 
surrogate models 
 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 
 
 
 
 
 

MODEL IDENTIFICATION 
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       Step 1: Define a large set of potential basis functions 
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OVERFITTING AND TRUE ERROR 

True error 
Empirical error 

Complexity 

Er
ro
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Ideal Model 

Overfitting Underfitting 

       Step 1: Define a large set of potential basis functions 
 

 
 

Step 2: Model reduction 

To identify the simple functional form 
we need to solve two problems: 
 

1. Model Sizing 
2. Basis function selection 
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• Qualitative tradeoffs of 
model reduction methods 

MODEL REDUCTION TECHNIQUES 

Backward elimination [Oosterhof, 63]  
Forward selection [Hamaker, 62] 

Stepwise regression [Efroymson, 60] 

Regularized regression techniques 
• Penalize the least squares objective using the 

magnitude of the regressors 

Best subset methods 
• Enumerate all possible 

subsets 
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MODEL SIZING 

Complexity or Terms Allowed in the Model 

Goodness-of-fit 
measure 

Solve for the 
best one-term 
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MODEL SIZING 

Complexity or Terms Allowed in the Model 

Goodness-of-fit 
measure 

Solve for the 
best two-term 
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MODEL SIZING 

Complexity or Terms Allowed in the Model 

Goodness-of-fit 
measure 

Some measure of 
error that is 
sensitive to 
overfitting 
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MODEL SIZING 

Complexity or Terms Allowed in the Model 

Goodness-of-fit 
measure 6th term was not worth the 

added complexity 
 

Final model: 5 terms long 



Carnegie Mellon University 30 

BASIS FUNCTION SELECTION 
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BASIS FUNCTION SELECTION 
Find the model with the 

least error 
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BASIS FUNCTION SELECTION 

We will solve this model for increasing T 
until we determine a model 
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BASIS FUNCTION SELECTION 
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ALAMO 
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• Goal: Choose new locations to sample that can best be used 
to improve the model 
 

• Solution: Search the problem space for areas of model 
inconsistency or model mismatch 
 

ADAPTIVE SAMPLING 

Relative 
model error 

Original system 
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• New goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 
 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 

ERROR MAXIMIZATION SAMPLING 

Surrogate model 
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• Information gained using error maximization 
sampling: 
– New data point locations that will be used to better train 

the next iteration’s surrogate model 
 

– Conservative estimate of the true model error 
• Defines a stopping criterion 
• Estimates the final model error 

ERROR MAXIMIZATION SAMPLING 
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1. Surrogate-based optimization of process 
simulations 

 

2. Surrogate model generation method 
 

3. Computational experiments 
 

4. Case studies 

– Validating modeling accuracy, efficiency, and parsimony 

OVERVIEW 
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• Goal - Test the accuracy, efficiency, and model simplicity 
 

• Modeling methods compared 
– MIP – Proposed methodology 
– LASSO – The lasso regularization 
– OLR – Ordinary least-squares regression 

 

• Sampling methods compared 
– EMS – Proposed error maximization technique 
– SLH – Single Latin hypercube (no feedback) 

 

• Two test sets 
– Test set A – Generated from bases available to ALAMO 
– Test set B – Generated from functions with forms not available to 

ALAMO (More real world test set) 

 
 

COMPUTATIONAL TESTING 
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• Two and three input black-box functions randomly chosen 
basis functions available to the algorithms with varying 
complexity from 2 to 10 terms 
 

• Basis functions allowed: 

DESCRIPTION – TEST SET A 
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RESULTS – TEST SET A 
Model accuracy Modeling efficiency 

Modeling methods 

Our 
method LASSO Least 

squares 
Error 

maximization 
Single Latin 
hypercube 

Sampling methods 

45 test problems, repeated 5 times, tested against 1000 independent data points 
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RESULTS – TEST SET A 
Model accuracy Modeling efficiency 

Modeling methods 

Our 
method LASSO Least 

squares 
Error 

maximization 
Single Latin 
hypercube 

Sampling methods 

45 test problems, repeated 5 times, tested against 1000 independent data points 

80% of the 
runs yielded 
<0.1% error 
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RESULTS – TEST SET A 
Model accuracy Modeling efficiency 

Modeling methods 

Our 
method LASSO Least 

squares 
Error 

maximization 
Single Latin 
hypercube 

Sampling methods 

45 test problems, repeated 5 times, tested against 1000 independent data points 

70% of the runs 
only required 

≤10 simulations 
to build 
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Modeling methods 
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MODEL SIZING RESULTS 
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• Two input black-box functions with basis functions 
unavailable to the algorithms with 
 

DESCRIPTION – TEST SET B 
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RESULTS – TEST SET B 
Model accuracy Modeling efficiency 

Modeling methods 

Our 
method LASSO Least 

squares 
Error 

maximization 
Single Latin 
hypercube 

Sampling methods 

12 test problems, repeated 5 times, tested against 1000 independent data points 
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1. Surrogate-based optimization of process 
simulations 

 

2. Surrogate model generation method 
 

3. Computational experiments 
 

4. Case studies 
– Small example problem 
– Real world example 

OVERVIEW 
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BUBBLING FLUIDIZED BED ADSORBER 

CO2 rich 
solid outlet 

Cooling 
water 

Outlet gas Solid feed 

CO2 rich 
gas 

Goal:  Optimize a bubbling fluidized bed reactor by 

• Minimizing the increased cost of electricity 

• Maximizing CO2 removal 
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BUBBLING FLUIDIZED BED ADSORBER 

CO2 rich 
solid outlet 

Cooling 
water 

Generate model of 
% CO2 removal: 

Over the Range: 
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POTENTIAL MODEL 

63 basis functions 
 

Not tractable in an algebraic 
superstructure formulation! 
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BUILDING THE MODEL 
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OPTIMAL PARETO CURVE 
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OPTIMAL PARETO CURVE 
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OPTIMAL PARETO CURVE 

Surrogate results 
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DESIGN VARIABLE RESULTS 

Bounds 
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OPTIMAL PARETO CURVE 

Surrogate results 

Simulation results 
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• Problem statement: 
Capture 90% of CO2 from a 350MW power plant’s post combustion flue gas with 
minimal increase in the cost of electricity 
 

 
 
 
 
 

• Design considerations: 
– Capture technology 

• Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc. 

– Number of reactors 
– Reactor configuration and geometry 
– Operating conditions 

 

CARBON CAPTURE OPTIMIZATION 

650 MW 
Coal fired power 

plant 

CO2 rich 
flue gas 

CO2 poor 
flue gas 

Ad
so

rb
er

 

Re
ge

ne
ra

to
r 
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Model outputs (14 total) 
Geometry required (2) 
Operating condition required (1) 
Gas mole fractions (3) 
Solid compositions (3) 
Flow rates (2) 
Outlet temperatures (3) 

BUBBLING FLUIDIZED BED 

• Model inputs (16 total) 
– Geometry (3) 
– Operating conditions (5) 
– Gas mole fractions (2) 
– Solid compositions (2) 
– Flow rates (4) 

Bubbling fluidized bed adsorber diagram 
Outlet gas Solid feed 

CO2 rich gas CO2 rich solid outlet 

Cooling 
water 

Model created by Andrew Lee at the National Energy 
and Technology Laboratory 
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EXAMPLE MODELS 
Solid feed 

CO2 rich gas 

Cooling 
water 
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SUPERSTRUCTURE OPTIMIZATION 

Flue gas from 
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SUPERSTRUCTURE OPTIMIZATION 
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SUPERSTRUCTURE OPTIMIZATION 
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Flue gas from 
power plant 

PRELIMINARY RESULTS 

a2 d1 

Solid sorbent 
stream 

Cleaned gas 

Other 
capture 
trains 

Regen. 
gas 

Cooling water 
Steam 
Work 

Variables Value 

COE ($/MWh) 92.3 

CapEX ($) 1.05E+8 

steamFlow (kg/s) 108 

derate (MW) 114 

utilInF (kgmol/s) 9.26 
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• The algorithm we developed is able to model black-box 
functions for use in optimization such that the models are 
 Accurate 
 Tractable in an optimization framework (low-complexity models) 
 Generated from a minimal number of function evaluations 

 

• Surrogate models can then be incorporated within a larger 
optimization framework 
 
 
 

• ALAMO site: archimedes.cheme.cmu.edu/?q=alamo 
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