

ALAMO: Automatic Learning of Algebraic Models for Optimization

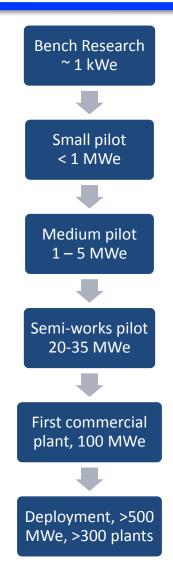
Alison Cozad^{1,2}, Nick Sahinidis^{1,2}, David Miller²

¹National Energy Technology Laboratory, Pittsburgh, PA,USA ²Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

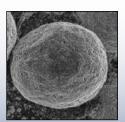
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

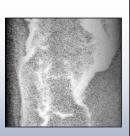
CARBON CAPTURE CHALLENGE

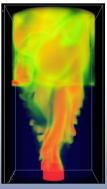
- The traditional pathway from discovery to commercialization of energy technologies can be quite long, i.e., ~ 2-3 decades
- President's plan requires that barriers to the widespread, safe, and cost-effective deployment of CCS be overcome within 10 years
- To help realize the President's objectives, new approaches are needed for taking carbon capture concepts from lab to power plant, <u>quickly</u>, and at low cost and risk
- CCSI will accelerate the development of carbon capture technology, from discovery through deployment, with the help of science-based simulations



CARBON CAPTURE SIMULATION INITIATIVE







Identify promising concepts

Reduce the time for design & troubleshooting

Quantify the technical risk, to enable reaching larger scales, earlier

Stabilize the cost during commercial deployment

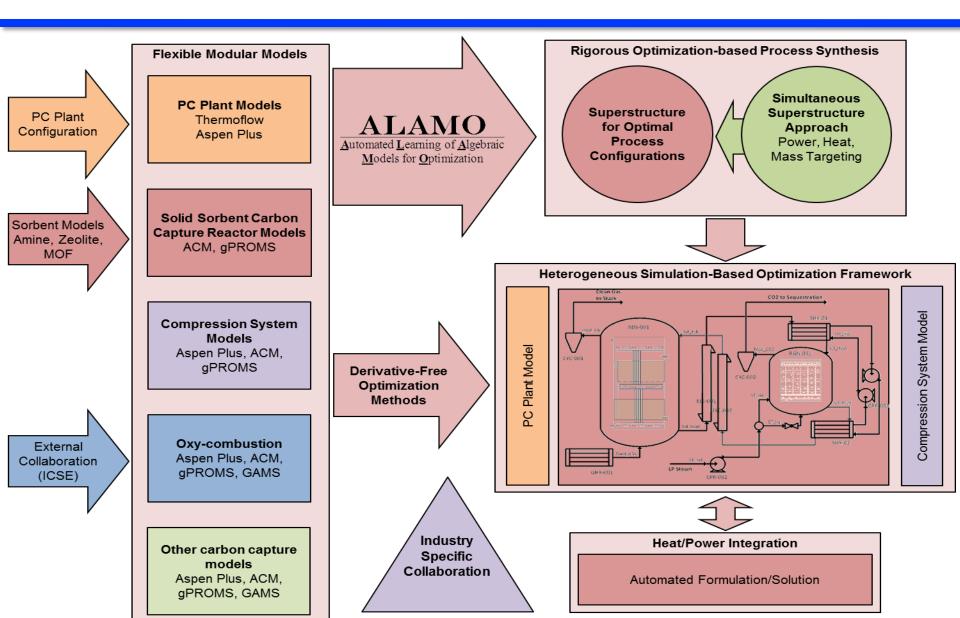
National Labs

Academia

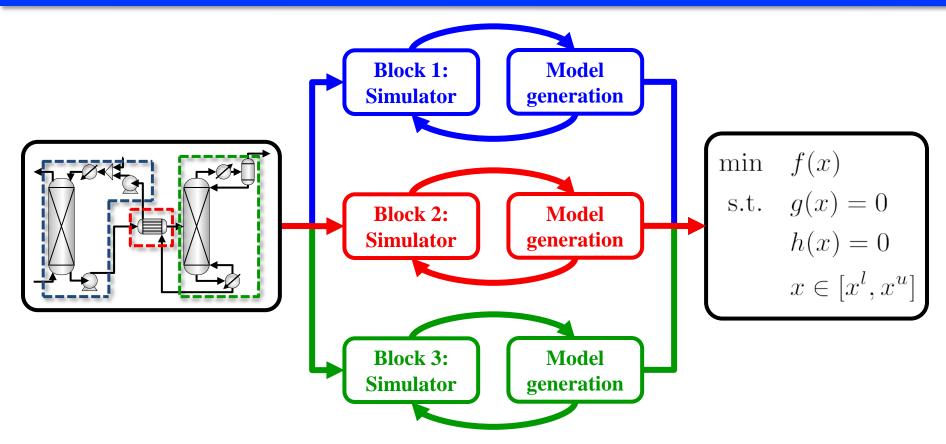
Industry

ALSTOM

CENTRAL ACTIVITY: OPTIMIZATION



PROCESS DISAGGREGATION



Process Simulation

Disaggregate process into process blocks

Surrogate Models

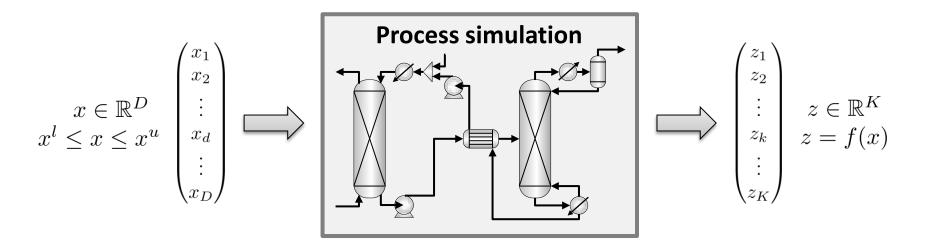
Build simple and accurate models with a functional form tailored for an optimization framework

Optimization Model

Add algebraic constraints h(x)=0: design specs, heat/mass balances, and logic constraints

LEARNING PROBLEM STATEMENT

 Build a model of output variables z as a function of input variables x over a specified interval



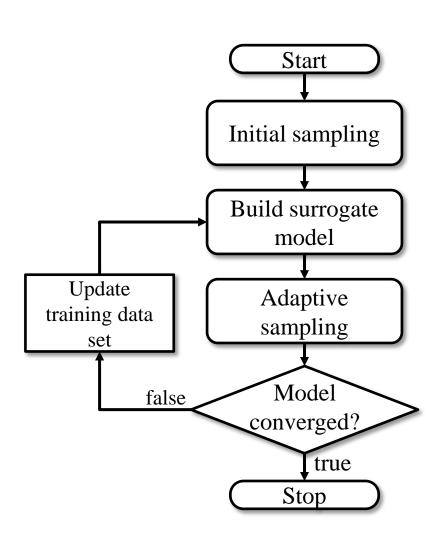
Independent variables:

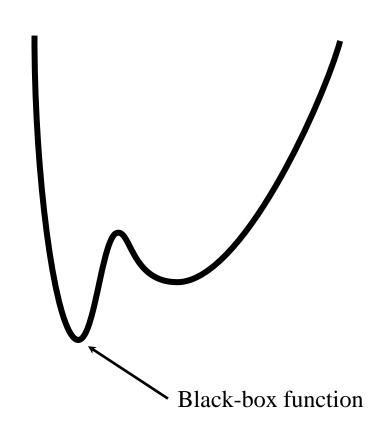
Operating conditions, inlet flow properties, unit geometry

Dependent variables:

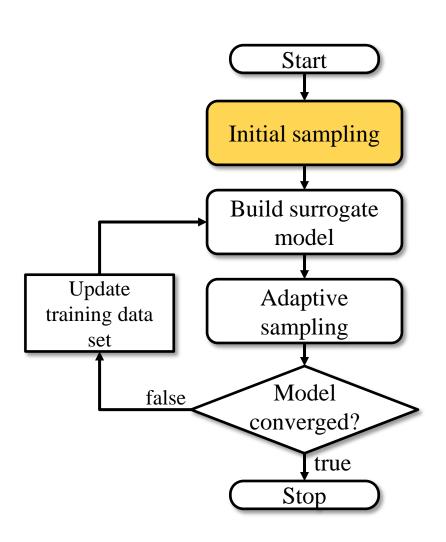
Efficiency, outlet flow conditions, conversions, heat flow, etc.

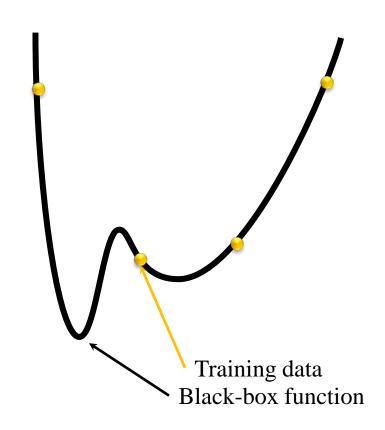
Automated Learning of Algebraic Models for Optimization



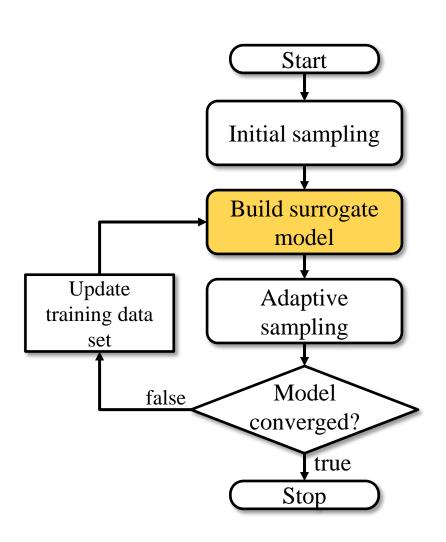


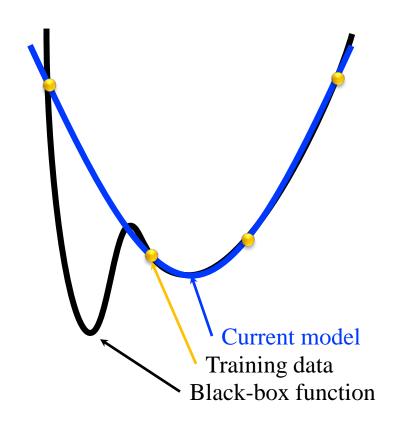
Automated Learning of Algebraic Models for Optimization



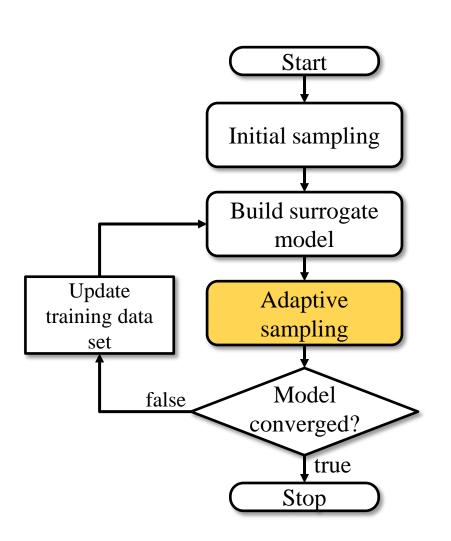


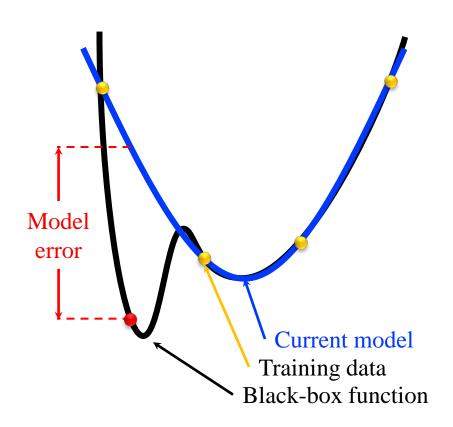
Automated Learning of Algebraic Models for Optimization



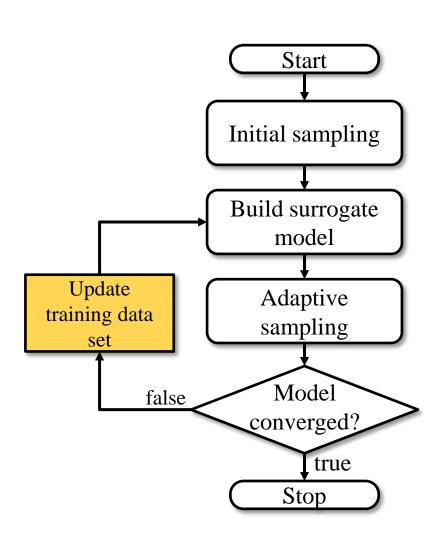


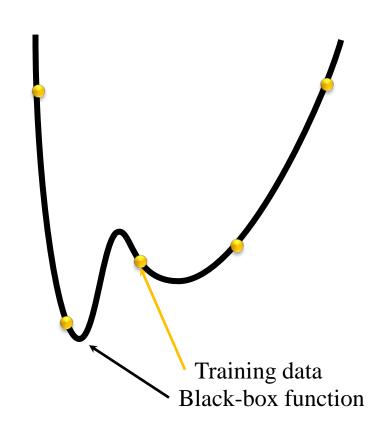
Automated Learning of Algebraic Models for Optimization



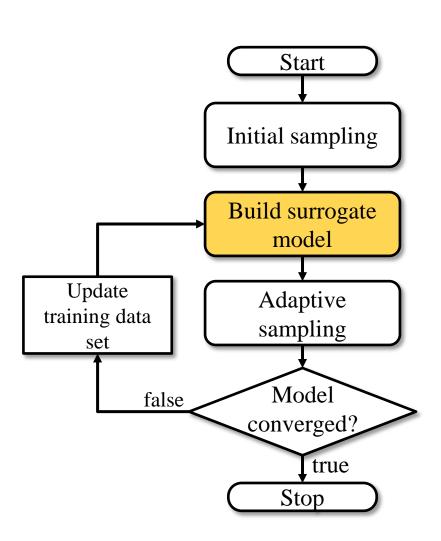


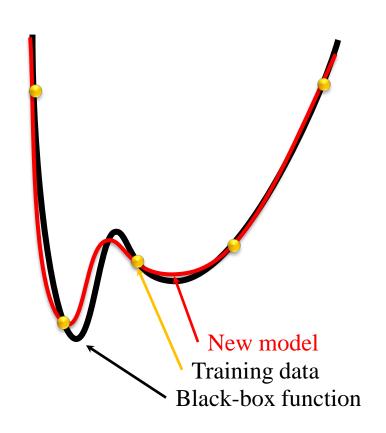
Automated Learning of Algebraic Models for Optimization





Automated Learning of Algebraic Models for Optimization





HOW TO BUILD THE SURROGATES

- We aim to build surrogate models that are
 - Accurate
 - We want to reflect the true nature of the simulation
 - Tailored for algebraic optimization

$$\hat{f}(x) = \sum_{i=1}^{n} \gamma_i exp\left(\frac{\|x\|}{\sigma^2}\right) + \beta_0 + \beta_1 x + \dots$$

$$\hat{f}(x) = \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 e^x$$

Generated from a minimal data set

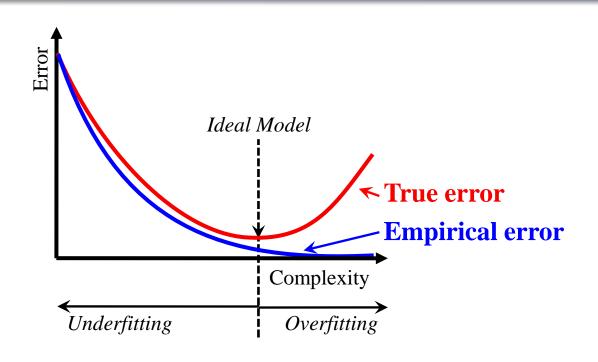
MODEL IDENTIFICATION

• Goal: Identify the functional form and complexity of the surrogate models z=f(x)

- Functional form:
 - General functional form is unknown: Our method will identify models with combinations of simple basis functions

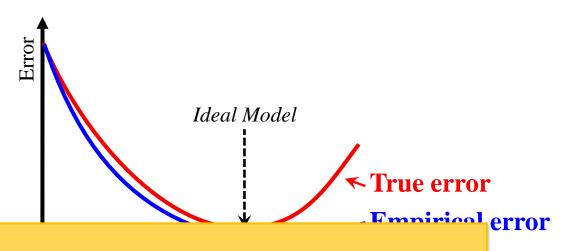
Cate	egory	$X_j(x)$			
I.	Polynomial	$(x_d)^{\alpha}$			
II.	Multinomial	$\prod_{d \in \mathcal{D}' \subseteq \mathcal{D}} \left(x_d \right)^{\alpha_d}$			
III.	Exponential and logarithmic forms	$\exp\left(\frac{x_d}{\gamma}\right)^{\alpha}, \log\left(\frac{x_d}{\gamma}\right)^{\alpha}$			
IV.	Expected bases	From experience, simple inspection, physical phenomena, etc.			

OVERFITTING AND TRUE ERROR



Step 1: Define a large set of potential basis functions
$$\hat{z}(x_1) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 \frac{x_1}{x_2} + \beta_5 \frac{x_2}{x_1} + \beta_6 e^{x_1} + \beta_7 e^{x_2} + \dots$$
 Step 2: Model reduction
$$\hat{z}(x) = \beta_0 + \beta_2 x_2 + \beta_5 \frac{x_2}{x_1} + \beta_7 e^{x_2}$$

OVERFITTING AND TRUE ERROR



To identify the simple functional form we need to solve two problems:

- 1. Model Sizing
- 2. Basis function selection

$$\hat{z}(x_1) = \beta_0 + \beta_1 x_1$$

Step 2: Model reduction

$$\hat{z}(x) = \beta_0 + \beta_2 x_2 + \beta_5 \frac{x_2}{x_1} + \beta_7 e^{x_2}$$

$$\hat{z}(x) = \beta_0 + \beta_2 x_2 + \beta_5 \frac{x_2}{x_1} + \beta_7 e^{x_2}$$

$$\hat{z}(x) = \beta_0 + \beta_2 x_2 + \beta_5 \frac{x_2}{x_1} + \beta_7 e^{x_2}$$

$$\begin{aligned} & \min \quad SE = \sum_{i=1}^{N} \left| z_i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right| \\ & \text{s.t.} \quad \sum_{j \in \mathcal{B}} y_j = T \\ & - U(1 - y_j) \leq \sum_{i=1}^{N} X_{ij} \left(z^i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right) \leq U(1 - y_j) \qquad j \in \mathcal{B} \\ & \beta^l y_j \leq \beta_j \leq \beta^u y_j \qquad \qquad j \in \mathcal{B} \\ & y_j = \{0, 1\} \qquad \qquad j \in \mathcal{B} \end{aligned}$$

$$\min\left(SE = \sum_{i=1}^{N} \left| z_i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right|\right)$$

Find the model with the least error

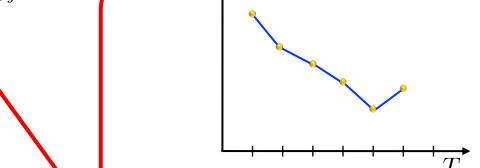
s.t.
$$\sum_{j \in \mathcal{B}} y_j = T$$

$$-U(1-y_j) \le \sum_{i=1}^N X_{ij} \left(z^i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right) \le U(1-y_j) \qquad j \in \mathcal{B}$$

$$\beta^l y_j \le \beta_j \le \beta^u y_j \qquad j \in \mathcal{B}$$

$$y_j = \{0, 1\}$$
 $j \in \mathcal{B}$

$$\begin{aligned} & \min \quad SE = \sum_{i=1}^{N} \left| z_i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right| \\ & \text{s.t.} \left(\sum_{j \in \mathcal{B}} y_j = T \right) \\ & - \mathcal{U}(1 - y_j) \leq \sum_{i=1}^{N} X_{ij} \left(z^i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right) \leq U(1 - y_j) \quad j \in \mathcal{B} \\ & \beta^l y_j \leq \beta_j \leq \beta^u y_j \end{aligned}$$



We will solve this model for increasing T until we determine a model

 $y_j = \{0, 1\}$

$$\min \quad SE = \sum_{i=1}^{N} \left| z_i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right|$$

s.t.
$$\sum_{j \in \mathcal{B}} y_j = T$$

$$\left(-U(1-y_j) \le \sum_{i=1}^N X_{ij} \left(z^i - \sum_{j \in \mathcal{B}} \beta_j X_{ij}\right) \le U(1-y_j)\right) \in \mathcal{B}$$

$$\beta^l y_j \le \beta_j \le \beta^u y_j$$

$$j \in \mathcal{B}$$

$$y_j = \{0, 1\}$$

$$j \in \mathcal{B}$$

$$y_i = 1$$

Basis function used in the model

 β_j is chosen to satisfy a least squares regression (assumes loose bounds on β_i)

$$y_j = 0$$

Pasis function NOT used in the model

$$\beta_j = 0$$

$$\min \quad SE = \sum_{i=1}^{N} \left| z_i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right|$$

s.t.
$$\sum_{j \in \mathcal{B}} y_j = T$$

$$-U(1-y_j) \le \sum_{i=1}^N X_{ij} \left(z^i - \sum_{j \in \mathcal{B}} \beta_j X_{ij} \right) \le U(1-y_j) \qquad j \in \mathcal{B}$$

$$\beta^l y_j \le \beta_j \le \beta^u y_j$$

$$j \in \mathcal{B}$$

$$y_j = \{0, 1\}$$

$$j \in \mathcal{B}$$

$$y_j = 1$$

Basis function used in the model

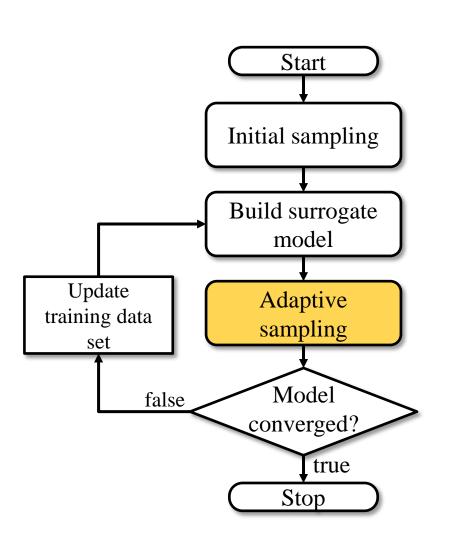
 β_j is chosen to satisfy a least squares regression (assumes loose bounds on β_j)

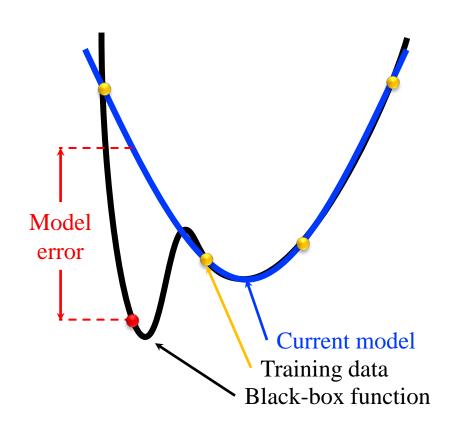
$$y_j = 0$$

Basis function NOT used in the model

$$\beta_j = 0$$

Automated Learning of Algebraic Models for Optimization





ERROR MAXIMIZATION SAMPLING

- New goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables

$$\max_{x} \left(\frac{z(x) - \hat{z}(x)}{z(x)} \right)^2$$

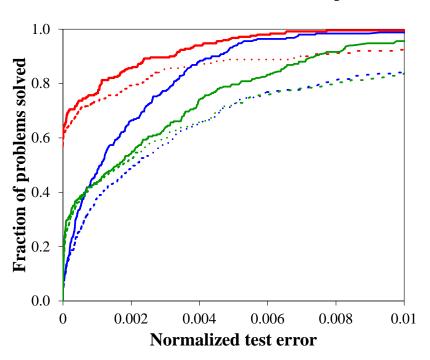
Optimized using a black-box or derivative-free solver (SNOBFIT)
 [Huyer and Neumaier, 08]

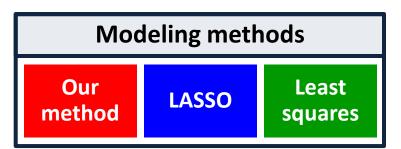
COMPUTATIONAL TESTING

- Modeling methods compared
 - MIP Proposed methodology
 - EBS Exhaustive best subset method
 - Note: due to high CPU times this was only tested on smaller problems
 - LASSO The lasso regularization
 - OLR Ordinary least-squares regression
- Sampling methods compared
 - DFO Proposed error maximization technique
 - SLH Single Latin hypercube (no feedback)

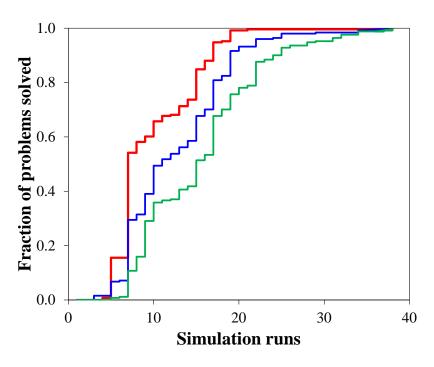
COMPUTATIONAL EXPERIMENTS

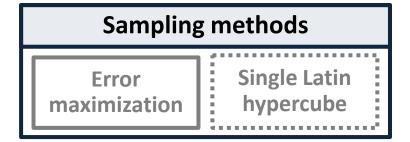
Model accuracy





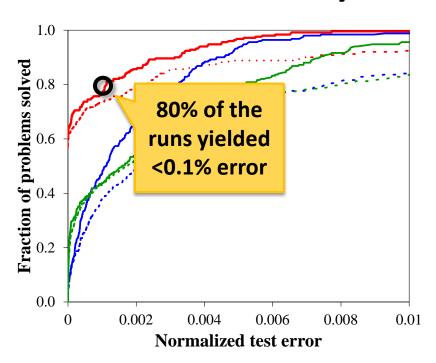
Modeling efficiency

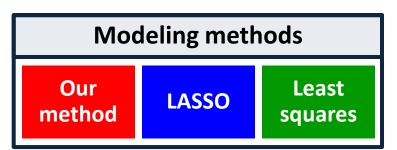




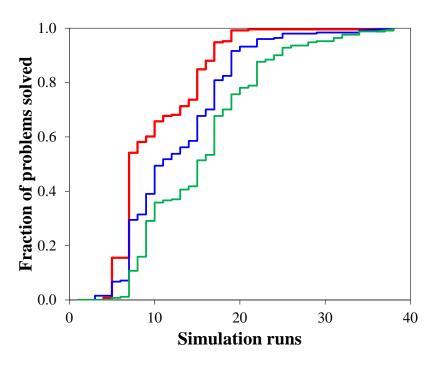
COMPUTATIONAL EXPERIMENTS

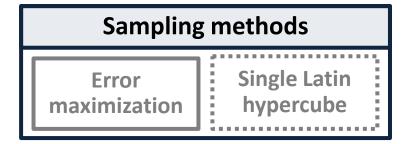
Model accuracy





Modeling efficiency



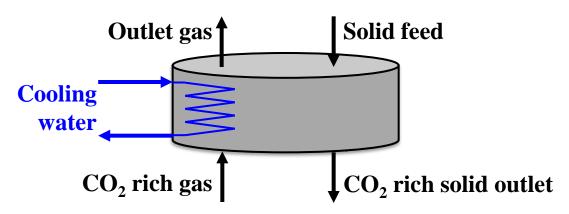


MODEL COMPLEXITY

No. inputs	No. true	MIP/ DFO	MIP/ SLH	EBS/ DFO	EBS/ SLH	LASSO/ DFO	LASSO/ SLH	OLR/ DFO	OLR/ SLH
	terms								
2	2	2	[2, 2]	2	2	[6, 8]	[6, 11]	[12, 15]	[12, 15]
2	3	3	3	3	3	[5, 12]	[5, 10]	[12, 14]	[12, 14]
2	4	[3, 4]	[3, 4]	[3, 4]	[3, 4]	[8, 11]	[8, 10]	[11, 12]	[11, 12]
2	5	[2, 4]	[2, 4]	[2, 5]	[2, 5]	[3, 12]	[4, 11]	[10, 16]	[10, 16]
2	6	[5, 6]	[6, 6]	[5, 6]	[6, 6]	[7, 10]	[6, 7]	[11, 13]	[11, 13]
2	7	[4, 6]	[4, 6]	[4, 7]	[4, 7]	[7, 11]	[6, 12]	[8, 13]	[8, 13]
2	8	[4, 5]	[5, 6]	[4, 5]	[5, 6]	[6, 8]	[6, 9]	[10, 15]	[10, 15]
2	9	[4, 6]	[4, 6]	NA	NA	[6, 14]	[7, 12]	[10, 17]	[10, 17]
2	10	[4, 8]	[4, 8]	NA	NA	[5, 14]	[7, 14]	[10, 14]	[10, 14]
3	2	[2, 3]	[2, 3]	NA	NA	[6, 12]	[7, 13]	[27, 29]	[27, 29]
3	3	[3, 3]	[3, 3]	NA	NA	[8, 16]	[7, 15]	[19, 22]	[19, 22]
3	4	4	[3, 4]	NA	NA	[10, 13]	[9, 10]	[16, 21]	[16, 21]
3	5	5	5	NA	NA	[11, 17]	[9, 15]	[15, 23]	[15, 23]
3	6	[5, 6]	[6, 6]	NA	NA	[9, 18]	[10, 13]	[15, 26]	[15, 26]
3	7	7	[7, 8]	NA	NA	[10, 22]	[10, 22]	22	22

BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram



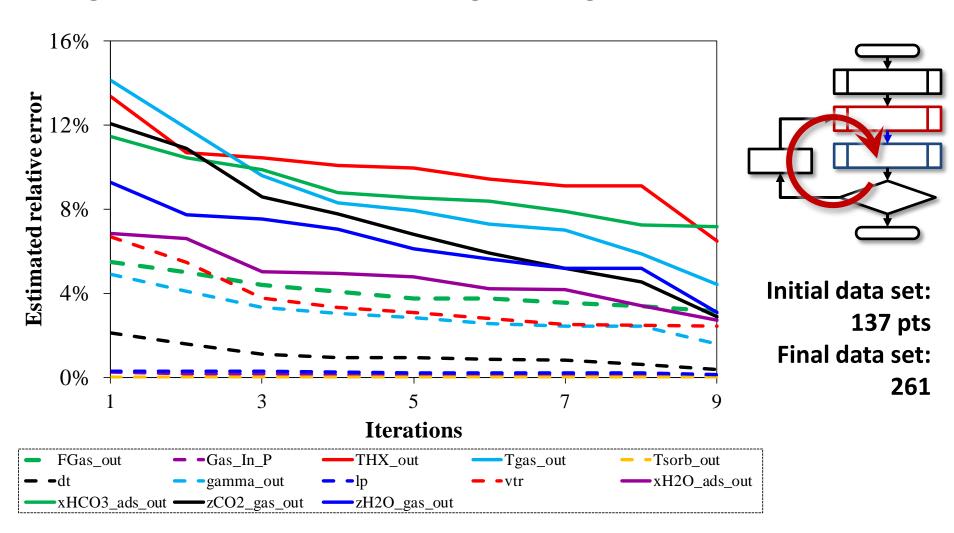
- Model inputs (14 total)
 - Geometry (3)
 - Operating conditions (4)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (4)

Model created by Andrew Lee at the National Energy and Technology Laboratory

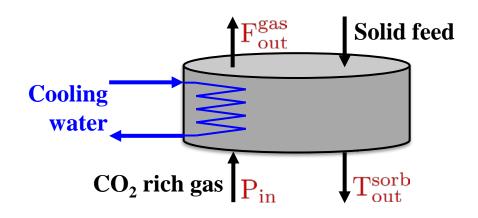
- Model outputs (13 total)
 - Geometry required (2)
 - Operating condition required (1)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (2)
 - Outlet temperatures (3)
 - Design constraint (1)

ADAPTIVE SAMPLING

Progression of mean error through the algorithm



EXAMPLE MODELS



$$P_{\text{in}} = \frac{1.0 P_{\text{out}} + 0.0231 L_b - 0.0187 \ln(0.167 L_b) - 0.00626 \ln(0.667 v_{\text{gi}}) - \frac{51.1 \text{ xHCO3}_{\text{in}}^{\text{ads}}}{F_{\text{in}}^{\text{gas}}}$$

$$T_{\rm out}^{\rm sorb} = 1.0\,{\rm T_{in}^{gas}} - \frac{\left(1.77\cdot 10^{-10}\right)\,{\rm NX}^2}{\gamma^2} - \frac{3.46}{{\rm NX}\,{\rm T_{in}^{gas}}\,{\rm T_{in}^{sorb}}} + \frac{1.17\cdot 10^4}{{\rm F}^{\rm sorb}\,{\rm NX}\,{\rm xH2O_{in}^{ads}}}$$

$$F_{\text{out}}^{\text{gas}} = 0.797 \,F_{\text{in}}^{\text{gas}} - \frac{9.75 \,T_{\text{in}}^{\text{sorb}}}{\gamma} - 0.77 \,F_{\text{in}}^{\text{gas}} \,\text{xCO2}_{\text{in}}^{\text{gas}} + 0.00465 \,F_{\text{in}}^{\text{gas}} \,T_{\text{in}}^{\text{sorb}} - 0.0181 \,F_{\text{in}}^{\text{gas}} \,T_{\text{in}}^{\text{sorb}} \,\text{xH2O}_{\text{in}}^{\text{gas}}$$

CONCLUSIONS

- The algorithm we developed is able to model black-box functions for use in optimization such that the models are
 - Accurate
 - Tractable in an optimization framework (low-complexity models)
 - ✓ Generated from a minimal number of function evaluations
- Surrogate models can then be incorporated within an optimization framework with complex objective functions and additional constraints

$$\Rightarrow \begin{cases} z = f(x) \\ \Rightarrow \end{cases} \text{ min } f(x) \\ \text{s.t. } g(x) = 0 \end{cases}$$

ALAMO site: archimedes.cheme.cmu.edu/?q=alamo