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Process 
simulation 

• Challenges and solutions: 
– Lack of an algebraic model     →  Build surrogate models 
– Computationally costly simulations → Selectively choose a minimal data set 
– Often noisy function evaluations → Use regression surrogate models 
– Scarcity of fully robust simulations → Disaggregate the process 

 
 

SIMULATION-BASED OPTIMIZATION 
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PROCESS DISAGGREGATION 

Block 1: 
Simulator 

Model 
generation 

Block 2: 
Simulator 

Model 
generation 

Block 3: 
Simulator 

Model 
generation 

Surrogate Models 
Build simple and accurate 
models with a functional 

form tailored for an 
optimization framework 

Process Simulation 
Disaggregate process into 

process blocks 

Optimization Model 
Add algebraic constraints 

h(x)=0: design specs, 
heat/mass balances, and 

logic constraints 
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• We aim to build surrogate models that are 
Accurate 

We want to reflect the true nature of the simulation 
 

Tailored for algebraic optimization 
 
 
 
 
 
Generated from a minimal data set 

 

HOW TO BUILD THE SURROGATES 
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• Goal: To generate an initial set of input variables to evenly 
sample the problem space 

 
 

 
 
 

• Latin hypercube design of experiments [McKay et al., 79] 

 
 

DESIGN OF EXPERIMENTS 

1
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• After running the design of experiments, we will evaluate 
the black-box function to determine each zi 
 
 
 
 
 
 
 

INITIAL SAMPLING 

Initial 
training 
set 

1
 

Process simulation 
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• Goal: Identify the functional form and complexity of the 
surrogate models 
 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 
 
 
 
 

 

MODEL IDENTIFICATION 

1
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OVERFITTING AND TRUE ERROR 

True error 
Empirical error 

Complexity 

Er
ro

r 

Ideal Model 

Overfitting Underfitting 

       Step 1: Define a large set of potential basis functions 
 

 
 

Step 2: Model reduction 
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• Generalized best subset problem: 
 
 
 
 
 
 
 

BEST SUBSET METHOD 



Carnegie Mellon University 19 

• Surrogate subset model: 
 
 
 

• Mixed-integer surrogate subset model: 
 
 
 

• Generalized best subset problem mixed-integer formulation: 
 
 
 
 
 

BEST SUBSET METHOD 
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• Corrected Akaike information criterion (AICc) [Hurvich and Tsai, 
93] 

 
 
 

• Substituting the mixed integer surrogate form into AICc: 
 
 
 
 

MIXED-INTEGER AICC 
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MIXED-INTEGER PROBLEM 
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• Further reformulation 
– Replace bilinear terms with big-M constraints 

 
 

– Decouple objective into two problems 
 
 
 
 
 
 
 
 
 

– Inner minimization objective reformulation 
 
 
 

MIXED-INTEGER PROBLEM 

b) basis and coefficient selection  

a) model sizing 
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NESTED MIXED-INTEGER PROBLEM 

a) Model sizing 
b) Basis and coefficient selection  
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– Inner problem 
• Stationarity condition used to solve for continuous variables 

 
 
 
 

• Linear objective used to solved for integer variables 

• Simplifications: 
– Outer problem 

• The outer problem is parameterized 
by T and a local minima is found 
 
 

  

PROBLEM SIMPLIFICATIONS 
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• This model is solved for increasing values of T until the AICc 

worsens 

FINAL BEST SUBSET MODEL 
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ADAPTIVE SAMPLING 

Model 
error 

New 
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Model i Sample Points Model i+1 

New sample 
point 

• Goal: Choose new locations to sample that can best be used 
to improve the model 

 

• Solution: Search the problem space for areas of model 
inconsistency or model mismatch 
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• Goal: Choose new locations to sample that can best be used 
to improve the model 

 

• Solution: Search the problem space for areas of model 
inconsistency or model mismatch 
 

ADAPTIVE SAMPLING 

Relative 
model error 

Original system 
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ADAPTIVE SAMPLING 

Original system Relative 
model error 

High model 
inconsistency 

or model error 

• Goal: Choose new locations to sample that can best be used 
to improve the model 

 

• Solution: Search the problem space for areas of model 
inconsistency or model mismatch 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 

 
 
– Optimized using a black-box or derivative-free solver (SNOBFIT) [Huyer and 

Neumaier, 08] 

ERROR MAXIMIZATION SAMPLING 

Surrogate model 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that 
maximizes the model error with respect to the 
independent variables 
 
 
 
 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 

ADAPTIVE SAMPLING 

Surrogate model 

3
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ADAPTIVE SAMPLING 
• Goal: Search the problem space for areas of model 

inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that 
maximizes the model error with respect to the 
independent variables 
 
 
 
 Black-box function 

Data points 
Surrogate model 



Carnegie Mellon University 32 

ADAPTIVE SAMPLING 
• Goal: Search the problem space for areas of model 

inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that 
maximizes the model error with respect to the 
independent variables 
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ADAPTIVE SAMPLING 
• Goal: Search the problem space for areas of model 

inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that 
maximizes the model error with respect to the 
independent variables 
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ADAPTIVE SAMPLING 
• Goal: Search the problem space for areas of model 

inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that 
maximizes the model error with respect to the 
independent variables 
 
 
 
 Black-box function 

Data points 
New surrogate model 
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ERROR MAXIMIZATION SAMPLING 

3
 

• Information gained using error maximization 
sampling: 
1. New data point locations that will be used to better 

train the next iteration’s surrogate model 
 

2. Conservative estimate of the true model error 
• Defines a stopping criterion 
• Estimates the final model error 
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• Surrogate generation methods have been implemented into 
a package:  

ALAMO 
(Automated Learning of Algebraic Models for Optimization) 

 

• Modeling methods compared 
– MIP – Proposed methodology 
– EBS – Exhaustive best subset method  

• Note: due to high CPU times this was only tested on smaller problems 
– LASSO – The lasso regularization 
– OLR – Ordinary least-squares regression 

 

• Sampling methods compared 
– DFO – Proposed error maximization technique 
– SLH – Single latin hypercube (no feedback) 

COMPUTATIONAL TESTING 
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• Two and three input black-box functions randomly chosen 
basis functions available to the algorithms with varying 
complexity from 2 to 10 terms 
 

• Basis functions allowed: 

DESCRIPTION – TEST SET A 
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RESULTS – TEST SET A 

Model accuracy Function evaluations 

45 test problems, repeated 5 times, tested against 1000 independent data points 
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 MODEL COMPLEXITY – TEST SET A 
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• Two input black-box functions with basis functions 
unavailable to the algorithms with 
 

DESCRIPTION – TEST SET B 
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RESULTS – TEST SET B 

Model accuracy Function evaluations 

12 test problems, repeated 5 times, tested against 1000 independent data points 
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MODEL COMPLEXITY – TEST SET B 
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• Problem statement: 
Capture 90% of CO2 from a 350MW power plant’s post combustion flue gas with 
minimal increase in the cost of electricity 
 

 
 
 
 
 

• Design considerations: 
– Capture technology 

• Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc. 

– Number of reactors 
– Reactor configuration and geometry 
– Operating conditions 

 

CARBON CAPTURE OPTIMIZATION 

650 MW 
Coal fired power 

plant 

CO2 rich 
flue gas 

CO2 poor 
flue gas 
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Model outputs (13 total) 
Geometry required (2) 
Operating condition required (1) 
Gas mole fractions (2) 
Solid compositions (2) 
Flow rates (2) 
Outlet temperatures (3) 
Design constraint (1) 

BUBBLING FLUIDIZED BED 

• Model inputs (14 total) 
– Geometry (3) 
– Operating conditions (4) 
– Gas mole fractions (2) 
– Solid compositions (2) 
– Flow rates (4) 

Bubbling fluidized bed adsorber diagram 
Outlet gas Solid feed 

CO2 rich gas CO2 rich solid outlet 

Cooling 
water 

Model created by Andrew Lee at the National Energy 
and Technology Laboratory 
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ADAPTIVE SAMPLING 
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Iterations
FGas_out Gas_In_P THX_out Tgas_out Tsorb_out
dt gamma_out lp vtr xH2O_ads_out
xHCO3_ads_out zCO2_gas_out zH2O_gas_out

Progression of mean error through the algorithm 

Initial data set: 
137 pts 

Final data set: 
261  
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EXAMPLE MODELS 
Solid feed 

CO2 rich gas 

Cooling 
water 



Carnegie Mellon University 47 

SUPERSTRUCTURE OPTIMIZATION 
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SUPERSTRUCTURE OPTIMIZATION 
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PRELIMINARY RESULTS 
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• The algorithm we developed is able to model black-box 
functions for use in optimization such that the models are 
 Accurate 
 Tractable in an optimization framework (low-complexity models) 
 Generated from a minimal number of function evaluations 

 

• Surrogate models can then be incorporated within a 
optimization framework flexible objective functions and 
additional constraints 

 

CONCLUSIONS 

Automated Learning of Algebraic Models for Optimization 

ALAMO 
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