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SIMULATION-BASED OPTIMIZATION

min  f(x)

s.t. g(x) =0
h(z) =0
v e [z, 2"
ql 1 s
Process L
simulation g(z)
. J

e Challenges and solutions:
— Lack of an algebraic model — Build surrogate models
— Computationally costly simulations - Selectively choose a minimal data set
— Often noisy function evaluations - Use regression surrogate models
— Scarcity of fully robust simulations - Disaggregate the process
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PROCESS DISAGGREGATION

Process Simulation

Disaggregate process into
process blocks
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Block 1: Model
Simulator generation
Block 2: Model
Simulator generation
Block 3: Model
Simulator generation

Surrogate Models

Build simple and accurate
models with a functional
form tailored for an
optimization framework

r N
min f(z
s.t. g(x) =0
h(x) =0
z € [z!, 2Y]
\ J

Optimization Model

Add algebraic constraints
h(x)=0: design specs,
heat/mass balances, and

logic constraints




ALAMO

Automated Learning of Algebraic Models for Optimization
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ALAMO

Automated Learning of Algebraic Models for Optimization
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ALAMO

Automated Learning of Algebraic Models for Optimization
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ALAMO

Automated Learning of Algebraic Models for Optimization
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HOW TO BUILD THE SURROGATES

e We aim to build surrogate models that are

v Accurate
v We want to reflect the true nature of the simulation

v Tailored for algebraic optimization

flz) = Z%exp (%) +h+ b+
1=1

f(x) = Bra+ Boa®+ Bsa® + Bye”

v Generated from a minimal data set
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ALGORITHMIC FLOWSHEET
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ALGORITHMIC FLOWSHEET

Initial sampling




DESIGN OF EXPERIMENTS

 Goal: To generate an initial set of input variables to evenly

sample the problem space /wi\
T
v=(z' 2? ! V) o=
d

=y

e Latin hypercube design of experiments [McKay et al., 79]
o, . _ o, . : Lo, . :

Carnegie Mellon University



INITIAL SAMPLING

e After running the design of experiments, we will evaluate
the black-box function to determine each 7!

x:(a’;]‘ a’/’2 “ .. x?’ . .. xN)

Process simulation

Initial
— = training
set
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ALGORITHMIC FLOWSHEET

Build surrogate
model




MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models 2 = f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(z)

I. Polynomial (CCd)a

II. Multinomial H (xd)ad
deD'CD

ITI. Exponential and loga-  exp (m_y—d) , log (%)
rithmic forms

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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OVERFITTING AND TRUE ERROR

Error

Ideal Model

< True error
— Empirical error

Complexity

< — —>
Underfitting Overfitting

Step 1: Define a Iarge set of potentlal basis functions

—~>\ ’_‘\
Z(ry) A 30 bz («3‘>T2l+ Bax122 + 34— +1 35 I+ fee™ ‘f'(,(j’?@“") + .
.. *v, IZ \ T]/ ’,_f/
Step 2: Model reduction ‘ ¥ A
2(x) = fBo +52932 -1-55— + Bre®?
I
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BEST SUBSET METHOD

 Generalized best subset problem:

min d(S, B)

st. SCB

where ®(S, ) is a goodness of fit measure for the subset of
basis function, S, and regression coefficients, [3.
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BEST SUBSET METHOD

e Surrogate subset model:

2a) = 3 B X ()

JES

e Mixed-integer surrogate subset model:

2a) = (y;8)) Xj(w) suchthat y;=1 je€s
e y; =0 j¢S8

 Generalized best subset problem mixed-integer formulation:
min (5, y)

B,y
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MIXED-INTEGER AICC

e Corrected Akaike information criterion (AICc) [Hurvich and Tsai,
93]

N 2
AICc(S, B) = Nlog (% > (zi - ZﬁjX@) ) oS+ 2j|\}9|_(\‘:99\’t?
i=1

JES

e Substituting the mixed integer surrogate form into AlCc:

N 2 QZ.y- Z.y-—}—l
AICe(B,y;) = N log (Ji’Z( Z (y;8;) X ) )+22jyj+ Ajf_j; ;J_l )
i=1 3
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MIXED-INTEGER PROBLEM

i

1
511%% AICe(B,T,y) = N log (N

s.t. Zyj.:T

JjEB

yj:{oal} jEB
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MIXED-INTEGER PROBLEM

e Further reformulation
— Replace bilinear terms with big-M constraints

. AL, R,
yiBi  — ,dj y; < B < ,dj Yj

— Decouple objective into two problems
a) model sizing
A

r

General: min &(f,T.y) = min {rggl @5,y (B,y)|r] + @T(T)}

Y
b) basis and coefficient selection

2
AIC¢(B,T):  AICcs,(B,y)lr = Nlog NZ( Zyyﬁj)Xij)

JjeB

2T (T +1)
Al ) =2T
Cer(T) +N—T—1

— Inner minimization objective reformulation
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NESTED MIXED-INTEGER PROBLEM

2
2T (T + 1)
B:) Xin o
EB(yJBJ) ]) )+ +N_T_1

JjEeB
/Blyj S Bj S Buyj J € B
y; ={0,1} jEeB

a) Model sizing
b) Basis and coefficient selection
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PROBLEM SIMPLIFICATIONS

e Simplifications:

— OQOuter problem

* The outer problem is parameterized _
by T and a local minima is found AlCc

Solution

— Inner problem

e Stationarity condition used to solve for continuous variables

i=1 jes jeS

* Linear objective used to solved for integer variables

N
Objective: Z 2 — Z Binj
JjES

=1

Carnegie Mellon University

N 2 N
%@j Z (Z@ - ZBinj) X ZXij (Zz — Z/Binj) =0, j€8
i=1




FINAL BEST SUBSET MODEL

min SE = Z
Yoy =T

jeB

Zj Z/Bg ij

JjEB

N
U(l—y;) SZ j(2’25g ) Ul —y;) jeB

jeB
5?Jj§5j55uj jeB
ij{O,l} ]EB
Bj € (85, B jEB

 This model is solved for increasing values of T until the AICc
worsens
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ADAPTIVE SAMPLING

e Goal: Choose new locations to sample that can best be used
to improve the model

e Solution: Search the problem space for areas of model
inconsistency or model mismatch

Model i Sample Points Model i+1

New
surrogate
model

Surrogate

Black-box
function

<,

” W
Of
Maximizato® Re uild moade
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ADAPTIVE SAMPLING

e Goal: Choose new locations to sample that can best be used
to improve the model

e Solution: Search the problem space for areas of model
inconsistency or model mismatch

.'.
.
.
‘‘‘
X .,
\ >\ .,
0..
.
L4
.
L4

Relative
’; model error

/;/ ..’0”%. =
# ‘}_#.
. y (Z(LE) —Z

z(z) . ) |
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ADAPTIVE SAMPLING

e Goal: Choose new locations to sample that can best be used
to improve the model

e Solution: Search the problem space for areas of model
inconsistency or model mismatch

High model

inconsistency
or model error \Vf

Relative
model error
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ERROR MAXIMIZATION SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Surrogate model

— Optimized using a black-box or derivative-free solver (SNOBFIT) [Huyer and
Neumaier, 08]
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ADAPTIVE SAMPLING

 Goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that
maximizes the model error with respect to the
independent variables

(255

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]
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ADAPTIVE SAMPLING

 Goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that
maximizes the model error with respect to the
independent varigbles

= Black-box function
@ Data points

= Surrogate model
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ADAPTIVE SAMPLING

 Goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that
maximizes the model error with respect to the
independent varigbles

Current
surrogate
optimum

= Black-box function
True @ Data points

minimum . = Surrogate model

S
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ADAPTIVE SAMPLING

 Goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that
maximizes the model error with respect to the
independent varigbles

. = Black-box function
New sample point

: : @ Data points
after interrogating
the surrogate = Surrogate model
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ADAPTIVE SAMPLING

 Goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that
maximizes the model error with respect to the
independent varigbles

= Black-box function
@ Data points

= New surrogate model
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ERROR MAXIMIZATION SAMPLING

* Information gained using error maximization
sampling:
1. New data point locations that will be used to better
train the next iteration’s surrogate model

2. Conservative estimate of the true model error
* Defines a stopping criterion
» Estimates the final model error
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COMPUTATIONAL TESTING

e Surrogate generation methods have been implemented into
a package:

ALAMO

(Automated Learning of Algebraic Models for Optimization)

e Modeling methods compared
— MIP - Proposed methodology

— EBS — Exhaustive best subset method
* Note: due to high CPU times this was only tested on smaller problems

— LASSO — The lasso regularization
— OLR - Ordinary least-squares regression

 Sampling methods compared
— DFO - Proposed error maximization technique
— SLH - Single latin hypercube (no feedback)
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DESCRIPTION — TEST SET A

 Two and three input black-box functions randomly chosen
basis functions available to the algorithms with varying
complexity from 2 to 10 terms

 Basis functions allowed:

Category X,(x) Parameters used

L. Polynomial (zq)” a = {+3,+2,+1,4+0.5}

II.  Multinomial I @)™ for || =2 a={+2, +1,+0.5}
deD'CD

for |D'| =3 «a={£l}

« «
III. Exponential exp (%d) , log (fr—d) a=1 v=1
and logarithmic
forms

True basis function coeflicients were randomly chosen from a uniform distri-
bution where 5 € [—1,1].
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RESULTS — TEST SET A

Model accuracy Function evaluations

<o
o]

S 2
£ Eos
= S
g N
-~ y S04
= — MIP/DFO =
2 --- MIP/SLH =
2 0 — LASSO/DFO 802 |
= --- LASSO/SLH B~ — MIP/DFO
— OLR/DFO ‘ — LASSO/DFO
--- OLR/SLH — OLR/DFO
00 T T T I 00 T T T T T
0 0.002 0.004 0.006 0.008 0.01 0 10 20 30 40
Normalized test error Function evaluations used in training set

45 test problems, repeated 5 times, tested against 1000 independent data points
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MODEL COMPLEXITY — TEST SET A

No. in- No. MIP/ MIP/ EBS/ EBS/ LASSO/ LASSO/ OLR/ OLR/
puts true DFO SLH DFO SLH DFO SLH DFO SLH
terms
2 2 2 2, 2] 2 2 6, 8] 6, 11] [12, 15] (12, 15]
2 3 3 3 3 3 [5, 12] [5, 10] [12, 14] (12, 14]
2 4 3, 4] 3, 4] 3, 4] [3, 4] 8, 11] [8, 10] [11, 12] (11, 12]
2 ) 2, 4] 2, 4] 2, 5] (2, 5] (3, 12] [4, 11] [10, 16] (10, 16]
2 6 5, 6] 6, 6] 5, 6] 6, 6] [7, 10] 6, 7] [11, 13] [11, 13]
2 7 4.6] 4,6 4,7 [47  [7,11  [6,12] (8,13  [8,13]
2 8 4, 5] 5, 6] [4, 5] [5, 6] 6, 8] [6, 9] 10, 15]  [10, 15]
2 9 4, 6] [4, 6] NA NA 6, 14] [7, 12] [10, 17] [10, 17]
2 10 4, 8] 4, 8] NA NA [5, 14] [7, 14] [10, 14] [10, 14]
3 2 2, 3] 2, 3] NA NA 6, 12] [7, 13] 27, 29] 27, 29]
3 3 3, 3] 3, 3] NA NA 8, 16] [7, 15] [19, 22] (19, 22]
3 4 4 3, 4] NA NA [10, 13] [9, 10] [16, 21] (16, 21]
3 5 5 5 NA NA [11, 17] [9, 15] [15, 23] (15, 23]
3 6 5, 6] 6, 6] NA NA [9, 18] [10, 13] [15, 26] (15, 26]
3 7 7 7, 8] NA NA [10, 22] [10, 22] 22 22
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DESCRIPTION — TEST SET B

 Two input black-box functions with basis functions
unavailable to the algorithms with

Function type Functional form

| z(x) = B exp(x;)

I (z) = B log(x;)

I11 z(z) = Baxfay
b

IV z(x) = T

with true parameters chosen from a uniform distribution where 5 € [—1, 1],
a,v € [—3,3],y € [-5,5], and 7,5 € {1, 2}.
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RESULTS — TEST SET B

Model accuracy Function evaluations
1.0 I 1.0 I

—I_,_I I T

e
o0
1
e
o0

-----

------

=
[=)
1

Fraction of problems solved
Fraction of problems solved

0.4 - 04
— MIP/DFO
--- MIP/SLH

0.2 — LASSO/DFO 02 1

' --- LASSO/SLH ’ — MIP/DFO

— OLR/DFO — LASSO/DFO

00 --- OLR/SLH 00 T— — OLR/DFO

0 0.002 0.004 0.006 0.008 0.01 ' 0 10 20 30 40
Normalized test error Function evaluations used in training set

12 test problems, repeated 5 times, tested against 1000 independent data points
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MODEL COMPLEXITY — TEST SET B

True Function MIP/ MIP/ LASSO/ LASSO/ OLR/ OLR/

func- 1D DFO SLH DFO SLH DFO SLH
tion

type

I a 5 5 3, 5] 4, 9] 6, 17] 6, 17]
I b 4, 10] 4, 10] 110, 14]  [5, §] 8, 17] 8, 17]
I C 3, 10] 6, 9] 8, 9] 4, 10] (13, 17]  [13, 17]
I1 a 4, 6] [4, 10] 8, 15] 7, 9] [15, 19]  [15, 19]
I1 b 1, 7] 1, 9] (13, 16]  [11, 17]  [13,30] [13, 30]
I1 C 5, 12] 5, 12] 9, 13] 9, 16] 9, 19] 9, 19]
11 a (3, 4] [1, 4] 2, 5] 2, 5] 9, 20] 9, 20]
I11 b 4 1, 4] 5 5 [9, 20] [9, 20]
I11 C 3, 4] 13, 4] 5, 8] 5, 9] [18, 24]  [18, 24]
IV a 7, 8] [4, 10] 8, 17] (11, 18]  [13, 19] [13, 19]
IV b 8, 9] 9, 10] 8, 12] (10, 14]  [9, 17] 9, 17]
IV C 6, 9] 9, 10] 5, 13] 4, 12] [13, 15]  [13, 15]
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CARBON CAPTURE OPTIMIZATION

* Problem statement:

Capture 90% of CO, from a 350MW power plant’s post combustion flue gas with
minimal increase in the cost of electricity

650 MW
Coal fired power
plant

CO, rich
flue gas

CO, poor
flue gas

Adsorber
Regenerator

* Design considerations:

— Capture technology
e Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc.

— Number of reactors
— Reactor configuration and geometry
— Operating conditions

Carnegie Mellon University



BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

Outlet gasT Solid feed
—1
 ——
Cooling :%
water —
CO, rich gas1 1CO2 rich solid outlet
e Model inputs (14 total) e Model outputs (13 total)
— Geometry (3) = Geometry required (2)
— Operating conditions (4) = Operating condition required (1)
— Gas mole fractions (2) = Gas mole fractions (2)
— Solid compositions (2) = Solid compositions (2)
— Flow rates (4) = Flow rates (2)

= OQOutlet temperatures (3)

Model created by Andrew Lee at the National Energy = Design constraint (1)
and Technology Laboratory
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ADAPTIVE SAMPLING

Progression of mean error through the algorithm

16% @
§ L 2
= 12% ‘
(4b) v
(5]
=
)
<
L 8%
©
S
£
= 4% Initial data set:
LL 137 pts
Final data set:
0% - | 261
1 3 5 7 9
Iterations

== [FGas_out - =Gas _In P e THX out == Tgas_out Tsorb_out
- =t = =gamma_out - =|p - eyir e xH20 ads_out
e XHCO3_ads_Out ====zCO2 gas out e===zH20 gas_out
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EXAMPLE MODELS

gas Solid feed

out

tE
|
 —
Cooling %
water =

coriengasp,, Yzt

Py, = 1.0Pgu +0.0231 L, —0.0187 In(0.167 Ly,) — 0.00626 In(0.667 v;) —
51.1 xHCO324s
Fgab
. (1.77-10719) NX? 3.46 1.17 - 107
Tglﬁb = 1.0 T%?b_ ( ) o gas rmsort + ads
: 72 NXTHS T Fsorb NX xH2020
as as 975 TbOIb as gas as 5
FS% = 0.79TF™ — M 0.77 FEE xCO28™ + 0.00465 F£° Tsorb —
f
0.0181 F£* Tsorb xH205™
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SUPERSTRUCTURE OPTIMIZATION

« Cleaned gas

Solid sorbent CO,
Capture

al

Solid sorbent
stream

——————

capture |
 trains

1 =
Flue gas from 1

power plant &

N

{imi

dil
d2 ([I‘
d3 ([I‘

i

d4 ?

—> Cooling water
—>  Steam
—> \Work
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SUPERSTRUCTURE OPTIMIZATION

-----------------------------
. *

Add the set of
surrogate models
generated for each
adsorber

0. *
lllllllllllllllllllllllllllll

Solid sorbent CO,
Capture
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PRELIMINARY RESULTS

Cleaned gas é 2:

R Regen.
= al B <_—$—gas
1 = a

______ L o

I Other 1 | :
: capture | 2 g " Solid sorbent
| trains stream

—_—— 1 - I
—L_\ Q>j

Flue gas from /j t

power plant \4’&7

—> Cooling water
—>  Steam
—> \Work
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CONCLUSIONS

* The algorithm we developed is able to model black-box
functions for use in optimization such that the models are
v’ Accurate
v' Tractable in an optimization framework (low-complexity models)
v Generated from a minimal number of function evaluations

e Surrogate models can then be incorporated within a
optimization framework flexible objective functions and
additional constraints

ALAMO

Automated Learning of Algebraic Models for Optimization

Carnegie Mellon University
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