

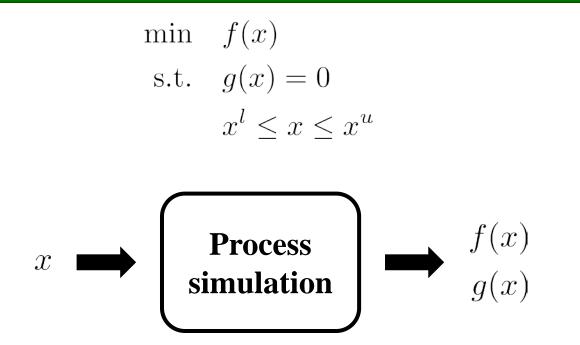
Learning process models from simulations

Alison Cozad¹, Nick Sahinidis¹², and David Miller²

¹ Department of Chemical Engineering, Carnegie Mellon University ² National Energy and Technology Laboratory

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

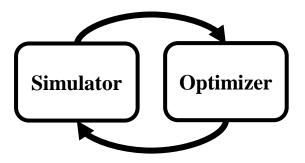
PROBLEM STATEMENT



- Challenges:
 - Lack of an algebraic model
 - Computationally costly simulations
 - Often noisy function evaluations
 - Scarcity of fully robust simulations

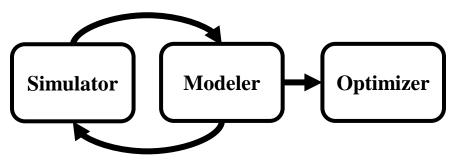
SIMULATION-BASED METHODS

Direct methods



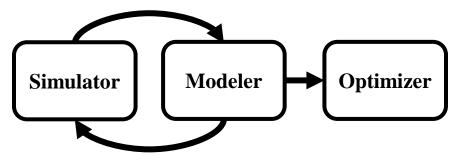
- Estimated gradient based
 - Finite element, perturbation analysis, etc.
- Derivative-free optimization (DFO)
 - Local/global
 - Stochastic/deterministic

Indirect methods



- What is modeled?
 - Objective, objective + constraints, disaggregated system
- Type of model
 - Linear/nonlinear
 - Simple/Complex
 - Algebraic/black-box
- Optimizer
 - Derivative/derivative-free

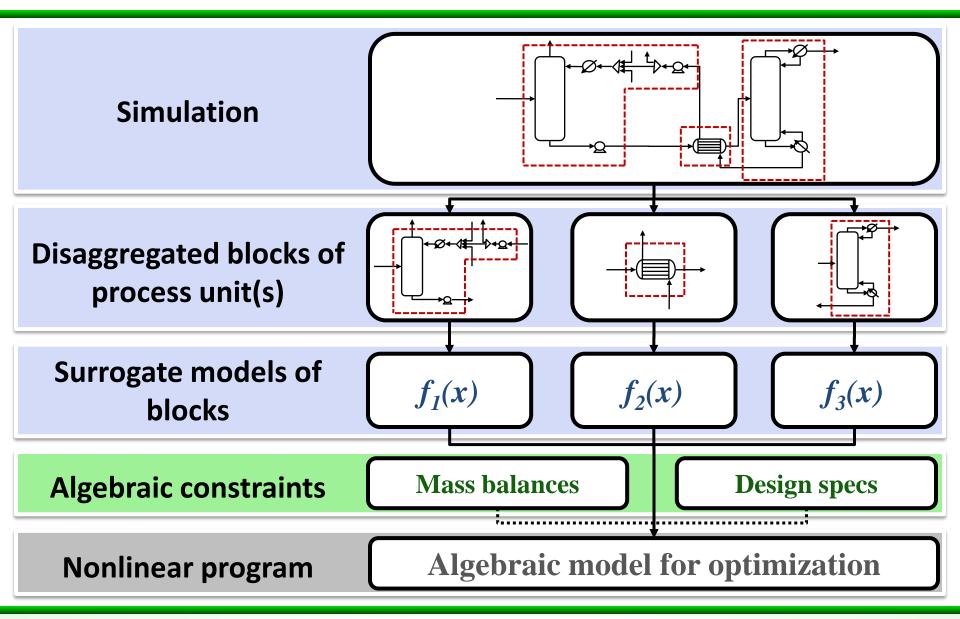
RECENT WORK IN CHEMICAL ENG



	Kriging	Neural nets	Other
Full process	 Palmer and Realff, 2002 Huang, et. al., 2006 Davis and lerapetriton, 2012 	 Michalopoulos, et. Al., 2001 	 Palmer and Realff, 2002
Disaggregated	 Caballero and Grossmann, 2008 	 Henao and Maravelias, 2011 	

Carnegie Mellon University

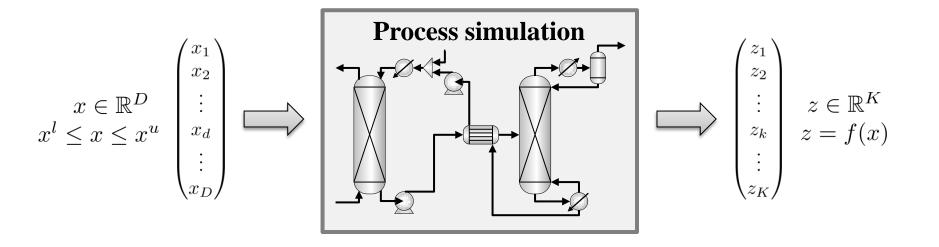
PROCESS DISAGGREGATION



Carnegie Mellon University

MODELING PROBLEM STATEMENT

 Build a model of output variables z as a function of input variables x over a specified interval



Independent variables:

Operating conditions, inlet flow properties, unit geometry

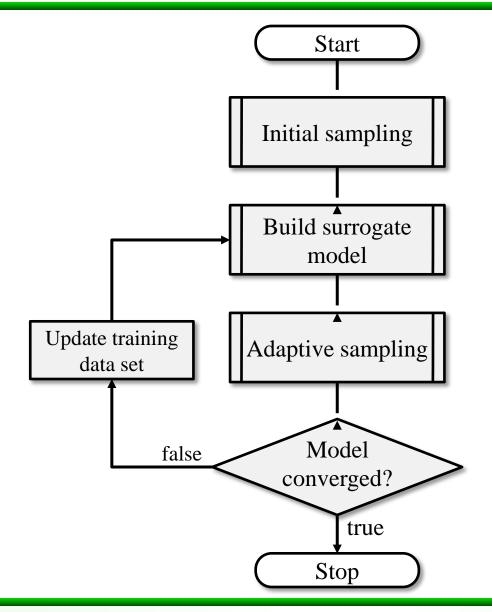
Dependent variables:

Efficiency, outlet flow conditions, conversions, heat flow, etc.

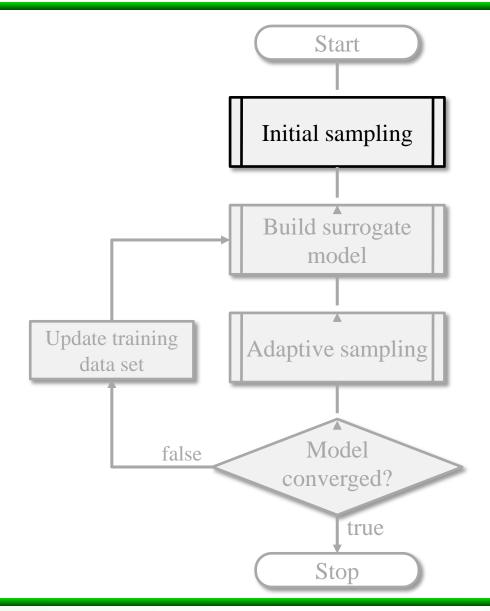
MODELING PROBLEM STATEMENT

- Model questions:
 - What is the functional form of the model?
 - How complex of a model is needed?
 - Will this be tractable in an algebraic optimization framework?
- Sampling questions:
 - How many sample points are needed to define an accurate model?
 - Where should these points be sampled?
- Desired model traits:
 - ✓ Accurate
 - ✓ Tractable in algebraic optimization: Simple functional forms
 - ✓ Generated from a minimal data set

ALGORITHMIC FLOWSHEET



ALGORITHMIC FLOWSHEET

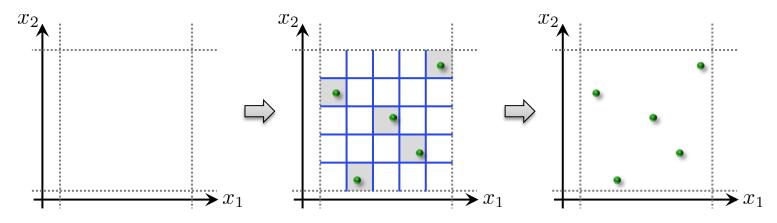


DESIGN OF EXPERIMENTS

• Goal: To generate an initial set of input variables to evenly sample the problem space $\begin{pmatrix} x_1^i \\ x^i \end{pmatrix}$

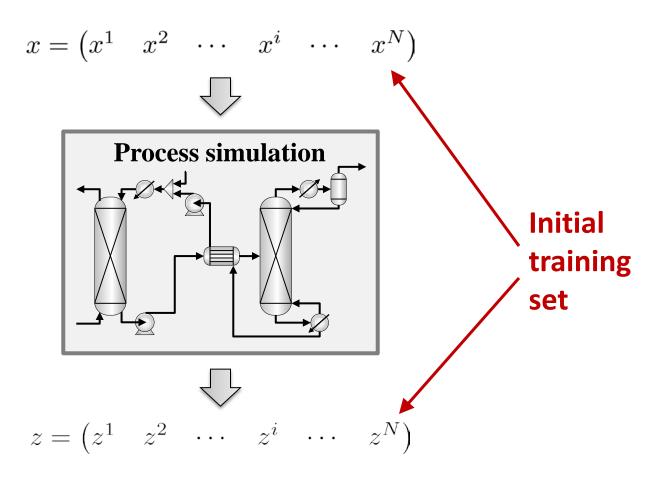
$$x = \begin{pmatrix} x^1 & x^2 & \cdots & x^i & \cdots & x^N \end{pmatrix} \qquad \qquad x^i = \begin{pmatrix} z \\ \vdots \\ x_d^i \\ \vdots \\ x_D^i \end{pmatrix}$$

Latin hypercube design of experiments - Space-filling design

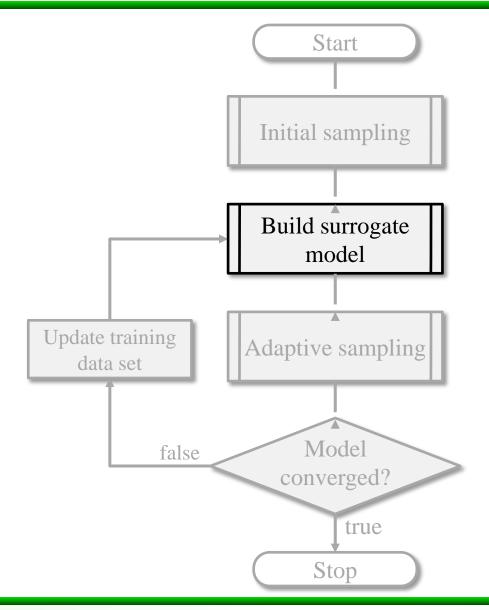


INITIAL SAMPLING

 After running the design of experiments, we will evaluate the black-box function to determine each zⁱ



ALGORITHMIC FLOWSHEET

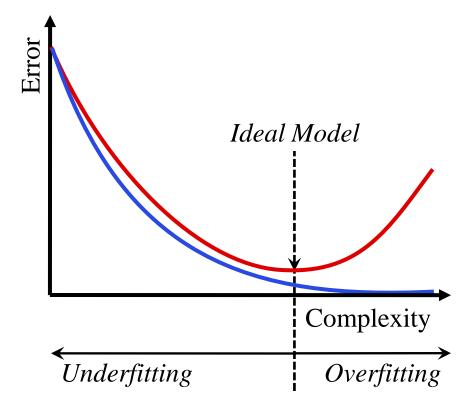


MODEL IDENTIFICATION

- Goal: Identify the functional form and complexity of the surrogate models z = f(x)
- Functional form:
 - General functional form is unknown: Our method will identify models with combinations of simple basis functions

Category		$X_j(x)$		
I.	Polynomial	$(x_d)^{lpha}$		
II.	Multinomial	$\prod_{d\in\mathcal{D}'\subseteq\mathcal{D}} (x_d)^{\alpha_d}$		
III.	Exponential and loga- rithmic forms	$\exp\left(\frac{x_d}{\gamma}\right)^{\alpha}, \log\left(\frac{x_d}{\gamma}\right)^{\alpha}$		
IV.	Expected bases	From experience, simple inspec- tion, physical phenomena, etc.		

OVERFITTING AND TRUE ERROR



- Empirical error:
 - Error between the model and the sampled data points
- True error:
 - Error between the model and the true function

SURROGATE MODEL

Surrogate model can have the form

$$\hat{z} = \sum_{j \in \mathcal{B}} \beta_j X_j(x)$$

Low-complexity desired surrogate form

$$\hat{z} = \sum_{j \in S} \beta_j X_j(x)$$

where $S \subseteq \mathcal{B}$

- \mathcal{S} is chosen to
 - Reduce overfitting
 - Achieve surrogate simplicity for a tractable final optimization model

BEST SUBSET METHOD

Generalized best subset problem:

 $\min_{\mathcal{S},\beta} \quad \Phi(\mathcal{S},\beta)$
s.t. $\mathcal{S} \subseteq \mathcal{B}$

where $\Phi(S, \beta)$ is a goodness of fit measure for the subset of basis function, S, and regression coefficients, β .

• Goodness of fit:

- Corrected Akaike Information Criterion (AICc)

Gives an estimate of the difference between a model and the true function

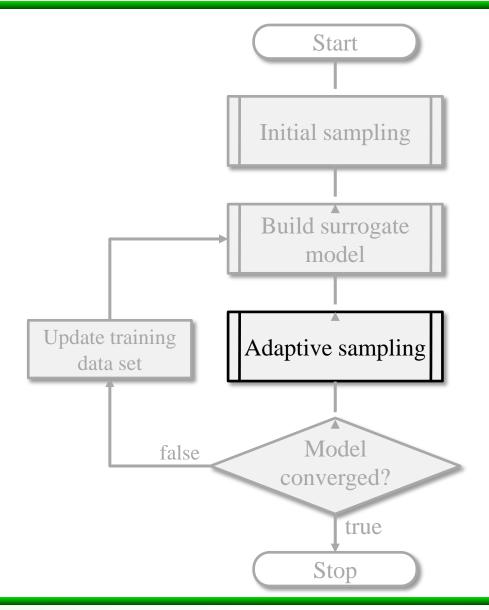
$$AICc = N \log \left(\frac{SSE}{N}\right) + 2T + \frac{2T(T+1)}{N-T-1}$$

Accuracy + Complexity

FINAL BEST SUBSET MODEL

• This model is solved for increasing values of *T* until the *AICc* worsens

ALGORITHMIC FLOWSHEET

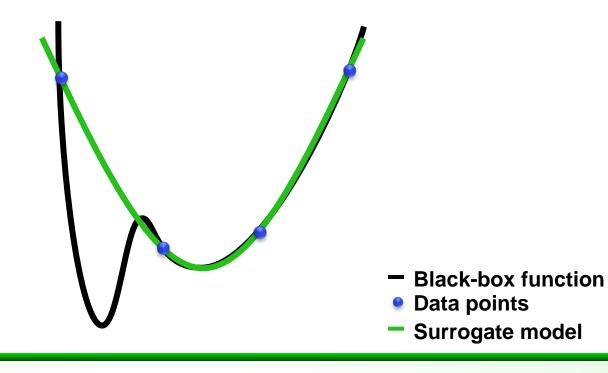


- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables

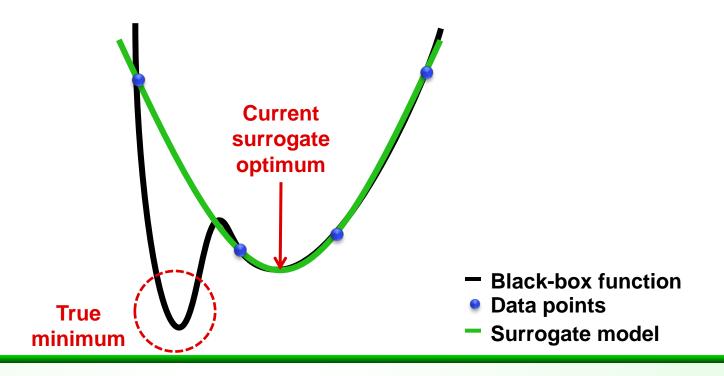
$$\max_{x} \left(\frac{z(x) - \hat{z}(x)}{z(x)} \right)^{2}$$

Optimized using a black-box or derivative-free solver (SNOBFIT)
 [Huyer and Neumaier, 08]

- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables

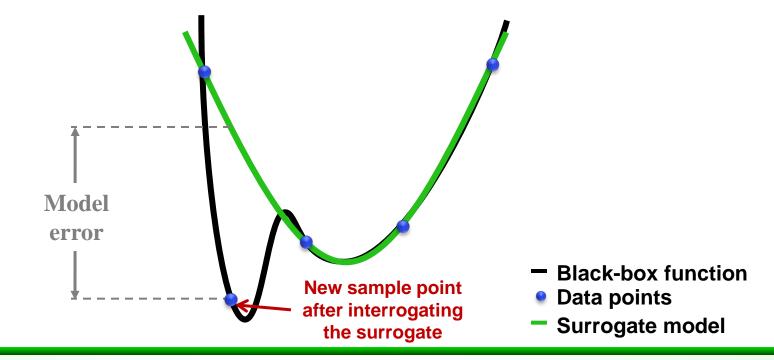


- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables



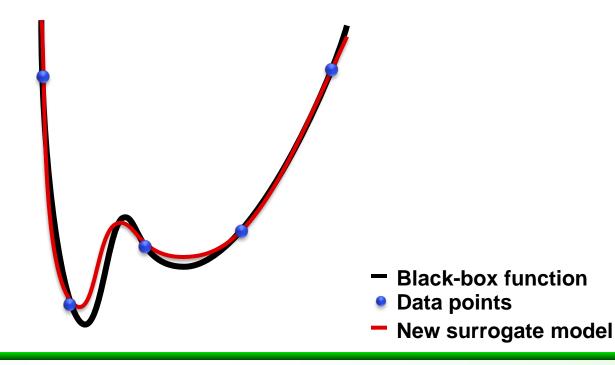
Carnegie Mellon University

- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables



Carnegie Mellon University

- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximizes the model error with respect to the independent variables



ERROR MAXIMIZATION SAMPLING

- Information gained using error maximization sampling:
 - **1.** New data point locations that will be used to better train the next iteration's surrogate model
 - 2. Conservative estimate of the true model error
 - Defines a stopping criterion
 - Estimates the final model error

COMPUTATIONAL TESTING

Surrogate generation methods have been implemented into a package:

ALAMO

(Automated Learning of Algebraic Models for Optimization)

Modeling methods compared

- MIP Proposed methodology
- EBS Exhaustive best subset method
 - Note: due to high CPU times this was only tested on smaller problems
- LASSO The lasso regularization
- OLR Ordinary least-squares regression
- Sampling methods compared
 - DFO Proposed error maximization technique
 - SLH Single latin hypercube (no feedback)

DESCRIPTION – TEST SET A

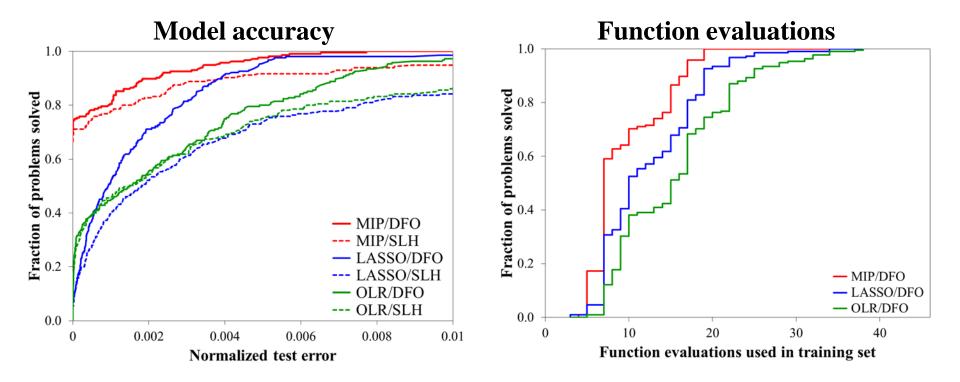
 Two and three input black-box functions randomly chosen basis functions available to the algorithms with varying complexity from 2 to 10 terms

Basis functions allowed:

Cate	egory	$X_j(x)$	Parameters used
I.	Polynomial	$(x_d)^{lpha}$	$\alpha = \{\pm 3, \pm 2, \pm 1, \pm 0.5\}$
II.	Multinomial	$\prod_{d\in\mathcal{D}'\subset\mathcal{D}} \left(x_d\right)^{\alpha_d}$	for $ \mathcal{D}' = 2$ $\alpha = \{\pm 2, \pm 1, \pm 0.5\}$
			for $ \mathcal{D}' = 3$ $\alpha = \{\pm 1\}$
III.	Exponential and logarithmic forms	$\exp\left(\frac{x_d}{\gamma}\right)^{\alpha}, \log\left(\frac{x_d}{\gamma}\right)^{\alpha}$	$\alpha = 1, \ \gamma = 1$

True basis function coefficients were randomly chosen from a uniform distribution where $\beta \in [-1, 1]$.

RESULTS – TEST SET A



45 test problems, repeated 5 times, tested against 1000 independent data points

MODEL COMPLEXITY – TEST SET A

No. of inputs	No. of true	M1/ DFO	M1/SLH	EBS/ DFO	EBS/ SLH	LASSO/ DFO	LASSO/ SLH	OLR/ DFO	OLR/ SLH
	terms								
2	2	2	[2, 2]	2	2	[6, 8]	[6, 11]	[12, 15]	[12, 15]
2	3	3	3	3	3	[5, 12]	[5, 10]	[12, 14]	[12, 14]
2	4	[3,4]	[3,4]	[3, 4]	[3,4]	[8, 11]	[8, 10]	[11, 12]	[11, 12]
2	5	[2, 4]	[2, 4]	[2,5]	[2,5]	[3, 12]	[4, 11]	[10, 16]	[10, 16]
2	6	[5,6]	[6,6]	[5,6]	[6,6]	[7, 10]	[6, 7]	[11, 13]	[11, 13]
2	7	[4, 6]	[4, 6]	$[4,\ 7]$	$[4,\ 7]$	[7, 11]	[6, 12]	[8, 13]	[8, 13]
2	8	[4,5]	[5,6]	$[4,\ 5]$	[5,6]	[6,8]	[6, 9]	[10, 15]	[10, 15]
2	9	[4, 6]	[4, 6]	NA	NA	[6, 14]	[7, 12]	[10, 17]	[10, 17]
2	10	[4,8]	[4, 8]	NA	NA	[5, 14]	[7, 14]	[10, 14]	[10, 14]
3	2	[2,3]	[2,3]	NA	NA	[6, 12]	[7, 13]	[27, 29]	[27, 29]
3	3	[3,3]	[3, 3]	NA	NA	[8, 16]	[7, 15]	[19, 22]	[19, 22]
3	4	4	[3,4]	NA	NA	[10, 13]	[9, 10]	[16, 21]	[16, 21]
3	5	5	5	NA	NA	[11, 17]	[9, 15]	[15, 23]	[15, 23]
3	6	[5,6]	[6, 6]	NA	NA	[9, 18]	[10, 13]	[15, 26]	[15, 26]
3	7	7	[7,8]	NA	NA	[10, 22]	[10, 22]	22	22

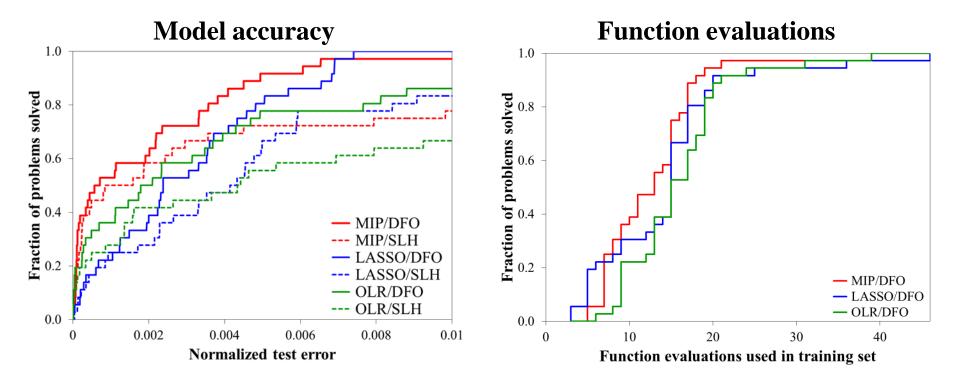
DESCRIPTION – TEST SET B

 Two input black-box functions with basis functions unavailable to the algorithms with

Function type	Functional form
Ι	$z(x) = \beta x_i^{\alpha} \exp(x_j)$
II	$z(x) = \beta x_i^\alpha \log(x_j)$
III	$z(x) = \beta x_1^{\alpha} x_2^{\nu}$
IV	$z(x) = \frac{\beta}{\gamma + x_i^{\alpha}}$

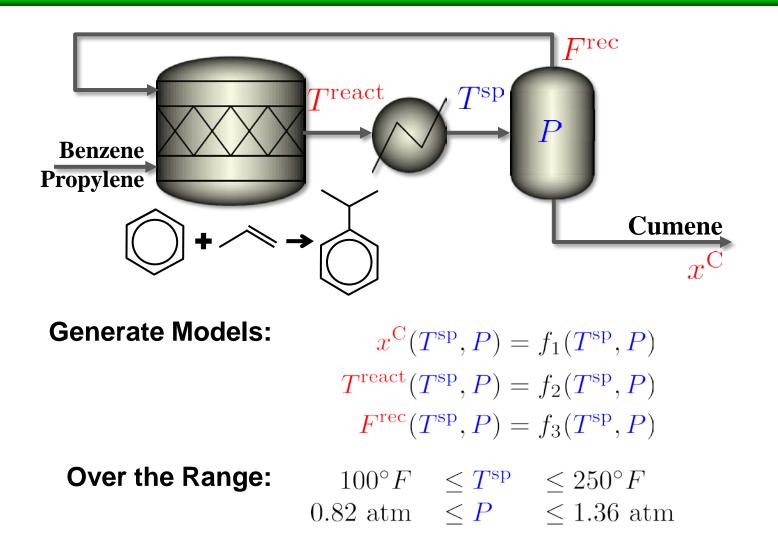
with true parameters chosen from a uniform distribution where $\beta \in [-1, 1]$, $\alpha, \nu \in [-3, 3], \gamma \in [-5, 5]$, and $i, j \in \{1, 2\}$.

RESULTS – TEST SET B



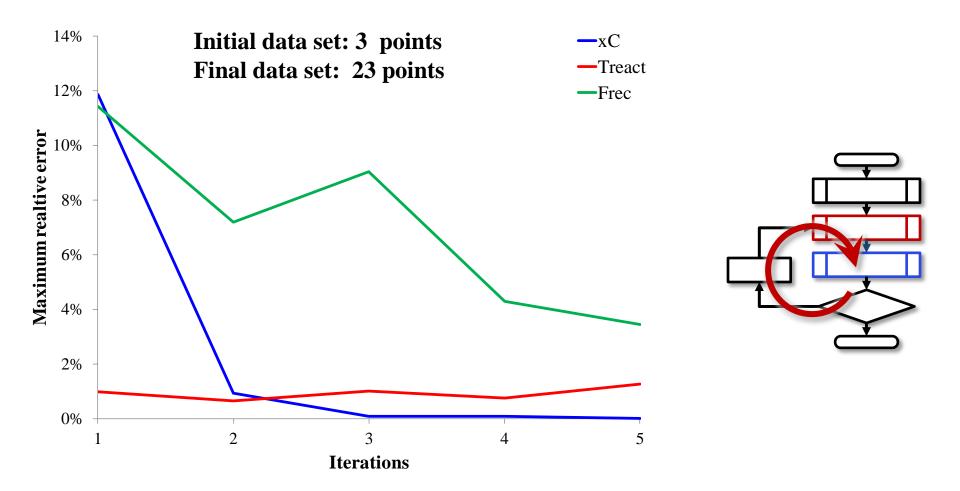
12 test problems, repeated 5 times, tested against 1000 independent data points

TEST CASE: CUMENE PRODUCTION



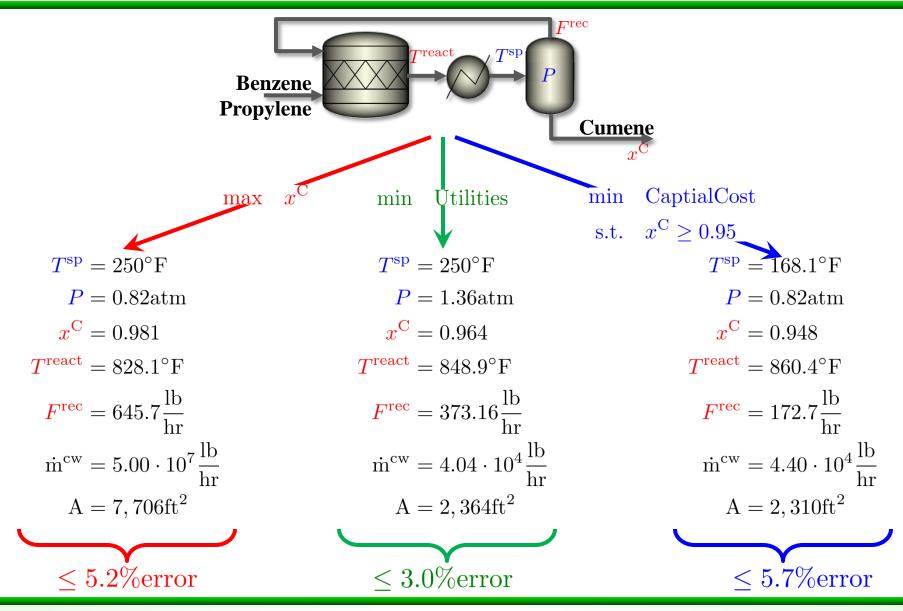
Cumene production simulation is form the Aspen Plus[®] Library

GENERATING THE SURROGATES



- Maximum error found at each iteration may increase
 - Due to the derivative-free solver is given more information at each iteration

PROCESS OPTIMIZATION

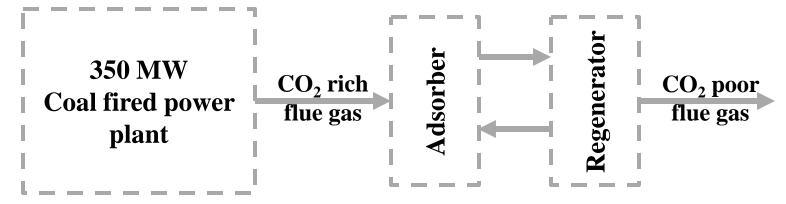


Carnegie Mellon University

CARBON CAPTURE OPTIMIZATION

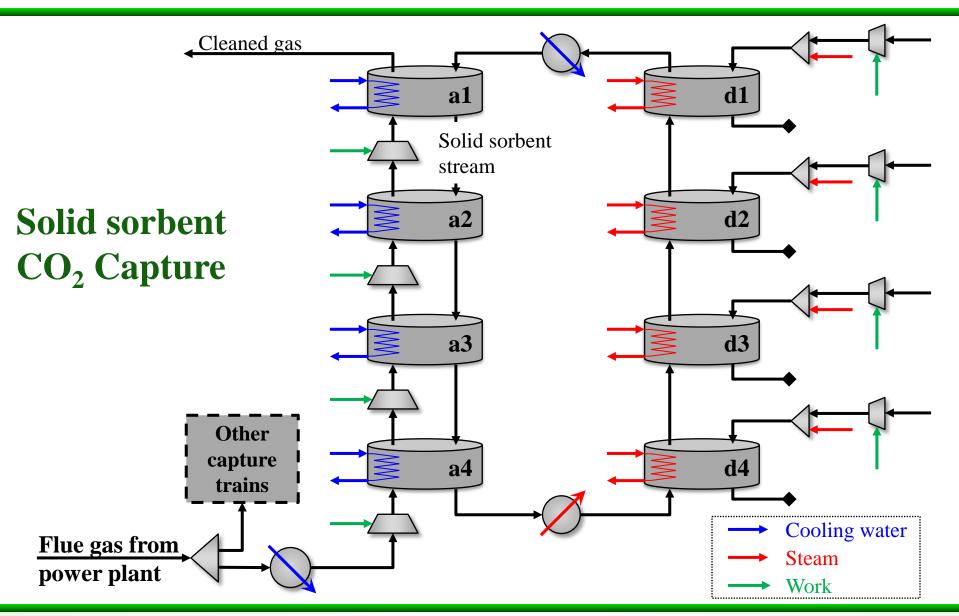
Problem statement:

Capture 90% of CO₂ from a 350MW power plant's post combustion flue gas with minimal increase in the cost of electricity



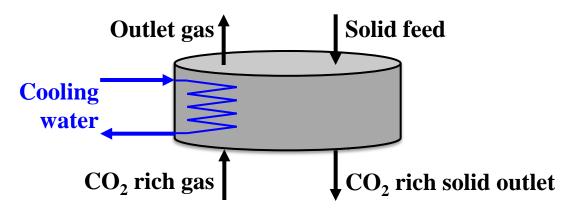
- Design considerations:
 - Capture technology
 - Bubbling fluidized bed, moving bed, fast fluidized bed, transport bed, etc.
 - Number of reactors
 - Reactor configuration and geometry
 - Operating conditions

SUPERSTRUCTURE OPTIMIZATION



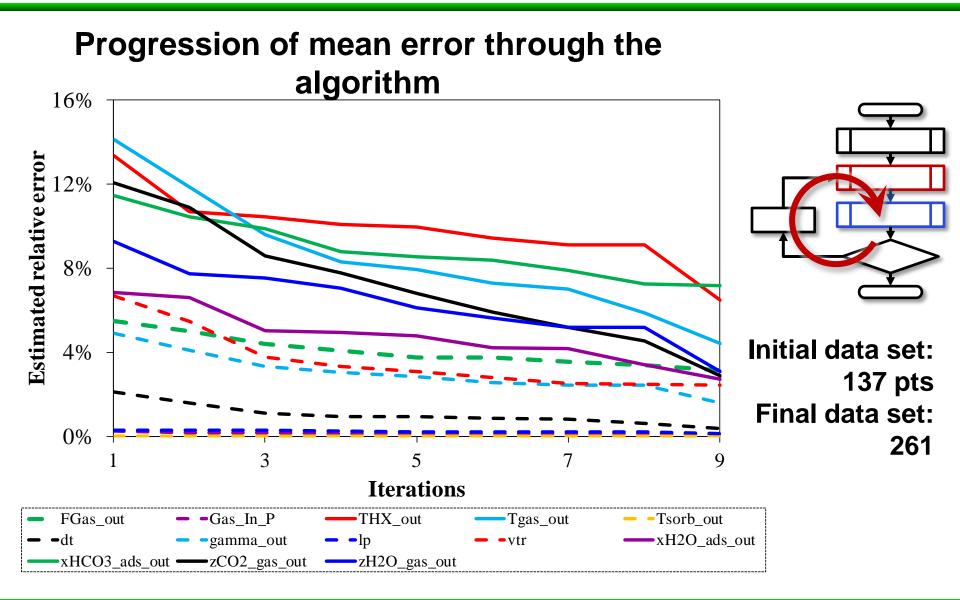
BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram



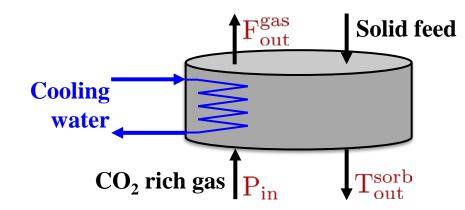
- Model inputs (14 total)
 - Geometry (3)
 - Operating conditions (4)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (4)

- Model outputs (13 total)
 - Geometry required (2)
 - Operating condition required (1)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (2)
 - Outlet temperatures (3)
 - Design constraint (1)



Carnegie Mellon University

EXAMPLE MODELS

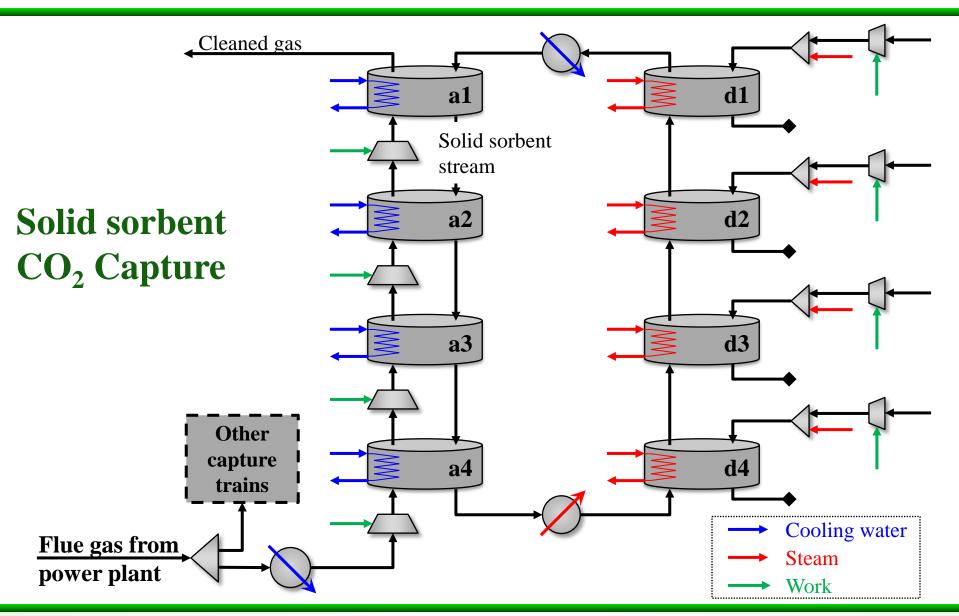


 $P_{in} = \frac{1.0 P_{out} + 0.0231 L_b - 0.0187 \ln(0.167 L_b) - 0.00626 \ln(0.667 v_{gi}) - \frac{51.1 \text{ xHCO3}_{in}^{ads}}{F_{in}^{gas}}$

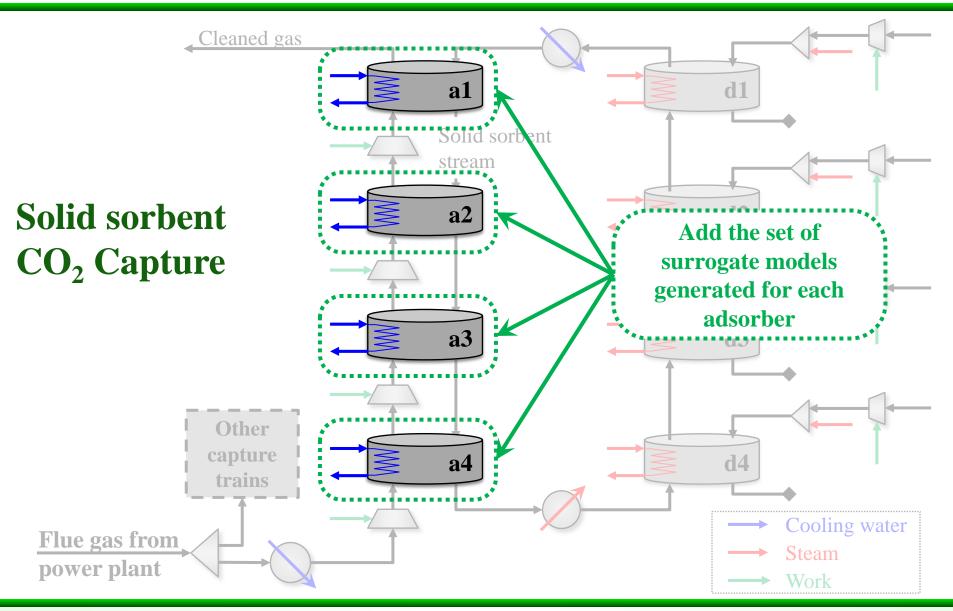
$$T_{\text{out}}^{\text{sorb}} = 1.0 \,\mathrm{T}_{\text{in}}^{\text{gas}} - \frac{\left(1.77 \cdot 10^{-10}\right) \,\mathrm{NX}^2}{\gamma^2} - \frac{3.46}{\mathrm{NX} \,\mathrm{T}_{\text{in}}^{\text{gas}} \,\mathrm{T}_{\text{in}}^{\text{sorb}}} + \frac{1.17 \cdot 10^4}{\mathrm{F}^{\text{sorb}} \,\mathrm{NX} \,\mathrm{xH2O}_{\text{in}}^{\text{ads}}}$$
$$F_{\text{out}}^{\text{gas}} = 0.797 \,\mathrm{F}_{\text{in}}^{\text{gas}} - \frac{9.75 \,\mathrm{T}_{\text{in}}^{\text{sorb}}}{\gamma} - 0.77 \,\mathrm{F}_{\text{in}}^{\text{gas}} \,\mathrm{xCO2}_{\text{in}}^{\text{gas}} + 0.00465 \,\mathrm{F}_{\text{in}}^{\text{gas}} \,\mathrm{T}_{\text{in}}^{\text{sorb}} - 0.0181 \,\mathrm{F}_{\text{in}}^{\text{gas}} \,\mathrm{T}_{\text{in}}^{\text{sorb}} \,\mathrm{xH2O}_{\text{in}}^{\text{gas}}$$

Carnegie Mellon University

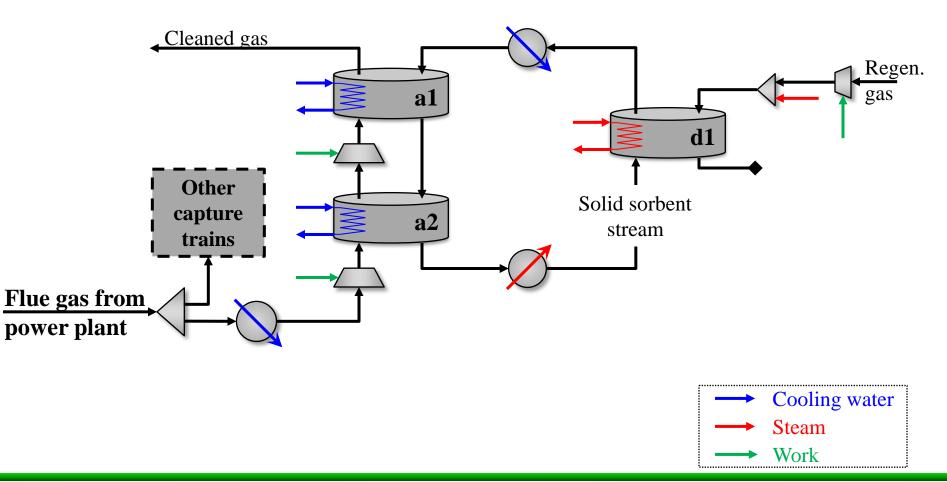
SUPERSTRUCTURE OPTIMIZATION



SUPERSTRUCTURE OPTIMIZATION



PRELIMINARY RESULTS



CONCLUSIONS

- The algorithm we developed is able to model black-box functions for use in optimization such that the models are
 - ✓ Accurate
 - ✓ Tractable in an optimization framework (low-complexity models)
 - ✓ Generated from a minimal number of function evaluations
- Surrogate models can then be incorporated within a optimization framework flexible objective functions and additional constraints

ALAMO
Automated Learning of Algebraic Models for Optimization

$$z = f(x)$$

 $in f(x)$
s.t. $g(x) = 0$

MODEL REDUCTION TECHNIQUES

 Qualitative tradeoffs of model reduction methods

Best subset methods

• Enumerate all possible subsets

Regularized regression techniques

• Penalize the least squares objective using the magnitude of the regressors

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63] Forward selection [Hamaker, 62]

PU modeling cost

BEST SUBSET METHOD

Surrogate subset model:

$$\hat{z}(x) = \sum_{j \in \mathcal{S}} \beta_j X_j(x)$$

• Mixed-integer surrogate subset model:

$$\hat{z}(x) = \sum_{j \in \mathcal{B}} (y_j \beta_j) X_j(x) \quad \text{such that} \quad \begin{array}{c} y_j = 1 & j \in \mathcal{S} \\ y_j = 0 & j \notin \mathcal{S} \end{array}$$

Generalized best subset problem mixed-integer formulation:

$$\min_{\substack{\beta, y \\ \text{s.t.}}} \Phi(\beta, y)$$

s.t. $y_j = \{0, 1\}$

MIXED-INTEGER PROBLEM

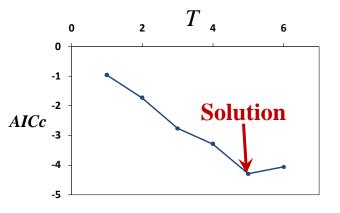
- Further reformulation
 - Replace bilinear terms with big-M constraints

$$y_j \beta_j \longrightarrow \beta_j^l y_j \le \beta_j \le \beta_j^u y_j$$

- Decouple objective into two problems General: $\min_{\beta,T,y} \Phi(\beta,T,y) = \min_{T} \left\{ \min_{\beta,y} [\Phi_{\beta,y}(\beta,y)|_{T}] + \Phi_{T}(T) \right\}$ b) basis and coefficient selection
- Inner minimization objective reformulation

PROBLEM SIMPLIFICATIONS

- Simplifications:
 - Outer problem
 - The outer problem is parameterized by T and a local minima is found



- Inner problem
 - Stationarity condition used to solve for continuous variables

$$\frac{d}{d\beta_j} \sum_{i=1}^N \left(z_i - \sum_{j \in \mathcal{S}} \beta_j X_{ij} \right)^2 \propto \sum_{i=1}^N X_{ij} \left(z_i - \sum_{j \in \mathcal{S}} \beta_j X_{ij} \right) = 0, \quad j \in \mathcal{S}$$

Linear objective used to solved for integer variables

Objective:
$$\sum_{i=1}^{N} \left| z_i - \sum_{j \in \mathcal{S}} \beta_j X_{ij} \right|$$