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Q: How to define the complexity of the model? 
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True vs. Empirical A: Estimate the true model error using Information Criterion 
 

Q: How to determine the unknown functional form? 
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Search the problem space for areas of model inconsistency or model mismatch 
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Goal:  Build a model           for each output          .  
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Iterations 

Initial data set: 3  points 
Final data set:  23 points 
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