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CARBON CAPTURE CHALLENGE 
• The traditional pathway from discovery to 

commercialization of energy technologies can be 
quite long, i.e., ~ 2-3 decades 

• President’s plan requires that barriers to the 
widespread, safe, and cost-effective deployment of 
CCS be overcome within 10 years 

• To help realize the President’s objectives, new 
approaches are needed for taking carbon capture 
concepts from lab to power plant, quickly, and at 
low cost and risk 

• CCSI will accelerate the development of carbon 
capture technology, from discovery through 
deployment, with the help of science-based 
simulations  

Bench Research   
~ 1 kWe 

Small pilot           
< 1 MWe 

Medium pilot      
1 – 5 MWe 

Semi-works pilot 
20-35 MWe 

First commercial 
plant, 100 MWe 

Deployment, >500 
MWe, >300 plants 
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CARBON CAPTURE SIMULATION INITIATIVE 

National Labs Academia Industry 

Identify  
promising  
concepts 

Reduce the time  
for design & 

troubleshooting 

Quantify the technical 
risk, to enable reaching 

larger scales, earlier 

Stabilize the cost 
during commercial 

deployment 
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CENTRAL ACTIVITY: OPTIMIZATION 
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PROCESS DISAGGREGATION 

Block 1: 
Simulator 

Model 
generation 

Block 2: 
Simulator 

Model 
generation 

Block 3: 
Simulator 

Model 
generation 

Surrogate Models 
Build simple and accurate 
models with a functional 

form tailored for an 
optimization framework 

Process Simulation 
Disaggregate process into 

process blocks 

Optimization Model 
Add algebraic constraints 

h(x)=0: design specs, 
heat/mass balances, and 

logic constraints 
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• Build a model of output variables z as a function of input 
variables x over a specified interval 
 
 
 

 
 

 
 

 

LEARNING PROBLEM STATEMENT 

Independent variables: 
Operating conditions, inlet flow 

properties, unit geometry 
 

Dependent variables: 
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc. 
 

Process simulation 
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ALAMO 
Automated Learning of Algebraic Models for Optimization 
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• We aim to build surrogate models that are 
– Accurate 

• We want to reflect the true nature of the simulation 
 

– Tailored for algebraic optimization 
 
 
 
 
 

– Generated from a minimal data set 

 

HOW TO BUILD THE SURROGATES 
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• Goal: Identify the functional form and complexity of the 
surrogate models 
 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 
 
 
 
 
 

MODEL IDENTIFICATION 
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OVERFITTING AND TRUE ERROR 

True error 
Empirical error 

Complexity 

Er
ro

r 

Ideal Model 

Overfitting Underfitting 

       Step 1: Define a large set of potential basis functions 
 

 
 

Step 2: Model reduction 
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OVERFITTING AND TRUE ERROR 

True error 
Empirical error 

Complexity 

Er
ro

r 

Ideal Model 

Overfitting Underfitting 

       Step 1: Define a large set of potential basis functions 
 

 
 

Step 2: Model reduction 

To identify the simple functional form 
we need to solve two problems: 
 

1. Model Sizing 
2. Basis function selection 
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BASIS FUNCTION SELECTION 
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BASIS FUNCTION SELECTION 
Find the model with the 

least error 
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BASIS FUNCTION SELECTION 

We will solve this model for increasing T 
until we determine a model 
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BASIS FUNCTION SELECTION 
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BASIS FUNCTION SELECTION 
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• New goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 
 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 

ERROR MAXIMIZATION SAMPLING 

Surrogate model 
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• Modeling methods compared 
– MIP – Proposed methodology 
– EBS – Exhaustive best subset method  

• Note: due to high CPU times this was only tested on smaller problems 
– LASSO – The lasso regularization 
– OLR – Ordinary least-squares regression 

 

• Sampling methods compared 
– DFO – Proposed error maximization technique 
– SLH – Single Latin hypercube (no feedback) 

COMPUTATIONAL TESTING 
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COMPUTATIONAL EXPERIMENTS 
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80% of the 
runs yielded 
<0.1% error 
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 MODEL COMPLEXITY 
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Model outputs (13 total) 
Geometry required (2) 
Operating condition required (1) 
Gas mole fractions (2) 
Solid compositions (2) 
Flow rates (2) 
Outlet temperatures (3) 
Design constraint (1) 

BUBBLING FLUIDIZED BED 

• Model inputs (14 total) 
– Geometry (3) 
– Operating conditions (4) 
– Gas mole fractions (2) 
– Solid compositions (2) 
– Flow rates (4) 

Bubbling fluidized bed adsorber diagram 
Outlet gas Solid feed 

CO2 rich gas CO2 rich solid outlet 

Cooling 
water 

Model created by Andrew Lee at the National Energy 
and Technology Laboratory 



Carnegie Mellon University 29 

ADAPTIVE SAMPLING 
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FGas_out Gas_In_P THX_out Tgas_out Tsorb_out
dt gamma_out lp vtr xH2O_ads_out
xHCO3_ads_out zCO2_gas_out zH2O_gas_out

Progression of mean error through the algorithm 

Initial data set: 
137 pts 

Final data set: 
261  
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EXAMPLE MODELS 
Solid feed 

CO2 rich gas 

Cooling 
water 
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• The algorithm we developed is able to model black-box 
functions for use in optimization such that the models are 
 Accurate 
 Tractable in an optimization framework (low-complexity models) 
 Generated from a minimal number of function evaluations 

 

• Surrogate models can then be incorporated within an 
optimization framework with complex objective functions 
and additional constraints 
 
 
 

• ALAMO site: archimedes.cheme.cmu.edu/?q=alamo 

CONCLUSIONS 
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