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CARBON CAPTURE CHALLENGE

* The traditional pathway from discovery to Bench Research
commercialization of energy technologies can be ~1kWe
quite long, i.e., ~ 2-3 decades

Small pilot
<1 MWe

* President’s plan requires that barriers to the
widespread, safe, and cost-effective deployment of
CCS be overcome within 10 years

Medium pilot

* To help realize the President’s objectives, new 1=>5Mwe
approaches are needed for taking carbon capture
concepts from lab to power plant, quickly, and at S —
low cost and risk 20-35 MWe

e CCSI will accelerate the development of carbon

capture technology, from discovery through Filr:rt]tcolrggn&r\c,\i/ael
deployment, with the help of science-based P
simulations

Deployment, >500
MWe, >300 plants
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CARBON CAPTURE SIMULATION INITIATIVE

Identify Reduce the time Quantify the technical Stabilize the cost
promising for design & ‘ risk, to enable reaching ‘ during commercial
concepts troubleshooting larger scales, earlier deployment
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CENTRAL ACTIVITY: OPTIMIZATION

PC Plant
Configuration

Sorbent Models
Amine, Zeolite,
MOF

External
Collaboration
(ICSE)

Flexible Modular Models

PC Plant Models
Thermoflow
Aspen Plus

Solid Sorbent Carbon
Capture Reactor Models
ACM, gPROMS

ALAMO

Automated Leaming of Algebraic
Models for Optimization

Compression System
Models
Aspen Plus, ACM,
gPROMS

Configurations

Rigorous Optimization-based Process Synthesis

Superstructure Superstructure
for Optimal Approach
Process Power, Heat,

Simultaneous

Mass Targeting

J L

Heterogeneous Simulation-Based Optimization Framework

Oxy-combustion
Aspen Plus, ACM,
gPROMS, GAMS

Derivative-Free
Optimization
Methods

PC Plant Model

Other carbon capture
models
Aspen Plus, ACM,
gPROMS, GAMS
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PROCESS DISAGGREGATION

Block 1: Model
Simulator generation

é )

—— G l min  f(x)
I =11 : < I ‘ L
i | CEoi i Block 2: Model st g(z) =0
i i I-=41 i Simulator generation h(i;) — 0
| | <+
i 2l L v e [z, 2Y]
\, J \ y
Block 3: Model
Simulator generation
Process Simulation Surrogate Models Optimization Model
Disaggregate process into Build simple and accurate Add algebraic constraints
process blocks models with a functional h(x)=0: design specs,
form tailored for an heat/mass balances, and
optimization framework logic constraints
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LEARNING PROBLEM STATEMENT

* Build a model of output variables z as a function of input
variables X over a specified interval

()

2

r € RP :
ot < <gh |

Process simulation

)

Independent variables:
Operating conditions, inlet flow
properties, unit geometry

()

zZ2

= |.

o/

2 e RE

z = f(x)

Dependent variables:
Efficiency, outlet flow conditions,
conversions, heat flow, etc.
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ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )

A\ 4

Initial sampling

\ 4

[ Build surrogate )

\ 4

X model )
Update Adaptive
training data :
s | sampling |

A

false

\ Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )
Initial sampling I /
:r Build surrogate )
X model )
Update Adaptive
training data :
s X sampling

A

\ Training data
Black-box function

false
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ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )

A\ 4

Initial sampling q /

\ 4

( Build surrogate )

\ 4

. model )
Update Adaptive
training data :
s | sampling |

A

false

Current model
\ Training data
Black-box function

Carnegie Mellon University



ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )

A\ 4

Initial sampling q /

\ 4

[ Build surrogate )

\ 4

. model ) ‘--

t .U'.Odatgt Adaptive Vodel
ralnlsneg ata | sampling J ode
error

A

false

Current model
\ Training data
Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )
Initial sampling I /
:r Build surrogate )
X model )
Sppekle Adaptive
training data :
s X sampling

A

\ Training data
Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )
Initial sampling I /
:r Build surrogate ]
. model )
Update Adaptive
training data :
s | sampling |

A

false

New model
\ Training data
Black-box function
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HOW TO BUILD THE SURROGATES

 We aim to build surrogate models that are

— Accurate
We want to reflect the true nature of the simulation

— Tailored for algebraic optimization

f () :Z%’%P (g) + b0+t ...
i=1

f () = Bro+ Paa? + Bga® + Py e”

— Generated from a minimal data set
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MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models
z = f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(z)

L. Polynomial (za)”

II.  Multinomial H (zq)™
deD'CD

ITI. Exponential and loga-  exp (m_y—d) , log (%)
rithmic forms

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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OVERFITTING AND TRUE ERROR

Error

Ideal Model

< True error

—Empirical error
Complexity

< — —>
Underfitting Overfitting

-y

Step 1: Define a Iarge set of potentlal basis functions
T

2(x1) A 30 bz -H32$21+ Baxixe + 341— -I-"3r z I+ fee™ -HB?GI"‘ + .
NS 2 \ -V ~,.—

'.
ay
.....
Ny
Ny

Step 2: Model reduction .‘ B

z(x) = Bo +52932 -1-55—1 + [Bre*?
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OVERFITTING AND TRUE ERROR

Error

Ideal Model

< True error
_Emniriral error

1
I
I
I
I
I
I
I
' 7

To identify the simple functional form
we need to solve two problems:

1. Model Sizing
2. Basis function selection

Step 1: Define a Iarge set of ! S functions -
L -
. Ty e7 T v1 1R
2(x1) = Po H- Bra 20+ Bsx120 + B4— +'3r | Bee’ +\,37€ 7+ -
.. e’ X2 \ Ty Som’
..." ..'nn 0’ ““
‘...... n... o “‘t

Step 2: Model reduction 4 PR

z(x) = Bo +52932 -1-55—1 + [Bre*?
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BASIS FUNCTION SELECTION

N
i=1 jEB
S.t. Zyj:T
jEB
N .
—UL—y) <Y Xij |2 =) BiXy | <UQ—vy;) jeEB
—1 jeB
5lyj§8j§5uyj JEB
y; =1{0,1} jeB
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BASIS FUNCTION SELECTION

Find the model with the

min .SEE::ZEI i

P B least error
S.t. Zyj =

JjEB
N .

—UL—y) <Y Xij |2 =) BiXy | <UQ—vy;) jeEB
—1 jEB

5lyj < Bj < 5“3/3 J € B

y; = 10,1} jeB

Carnegie Mellon University



BASIS FUNCTION SELECTION

Carnegie Mellon University

We will solve this model for increasing T
until we determine a model /




BASIS FUNCTION SELECTION

min SE:Z

sis function NOT used
in the model

Basis function used in the model
B; is chosen to satisfy a least
squares regression

\\ (assumes loose bounds on f3;)

B =0
Carnegie Mellon University 20 1




BASIS FUNCTION SELECTION

N
min SFE = Z Zi — Z,Bij
i=1 jEB
S.t. Zyj =
JjEB
N .
—U(l—yﬂﬁZXw ZZ—ZBszJ <U(1-1yj) jEeB
=1 jeB
jeB
jEeB

y; =0

Basis function NOT used
in the model

Basis function used in the

B; is chosen to satisfy a least
squares regression

(assumes loose bounds on f3;)

B =0
’ /
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ALAMO

Automated Learning of Algebraic Models for Optimization

(  Start )

A\ 4

Initial sampling q /

\ 4

[ Build surrogate )

\ 4

. model ) ‘--

t .U'.Odatgt Adaptive Vodel
ralnlsneg ata | sampling J ode
error

A

false

Current model
\ Training data
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ERROR MAXIMIZATION SAMPLING

* New goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Surrogate model

S\ @)

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]
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COMPUTATIONAL TESTING

* Modeling methods compared
— MIP - Proposed methodology

— EBS — Exhaustive best subset method
Note: due to high CPU times this was only tested on smaller problems

— LASSO - The lasso regularization
— OLR - Ordinary least-squares regression

e Sampling methods compared
— DFO - Proposed error maximization technique
— SLH - Single Latin hypercube (no feedback)

Carnegie Mellon University 24 ,



COMPUTATIONAL EXPERIMENTS

Model accuracy Modeling efficiency

o
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o
o

o
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0 0.002 0.004 0.006 0.008 0.01 10 20 30 40

0
Normalized test error Simulation runs
Modeling methods Sampling methods
Our Least Error Single Latin
LASSO . :
method squares maximization | : hypercube
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COMPUTATIONAL EXPERIMENTS

1.0

Fraction of problems solved

Model accuracy

" 80% of the

runs yielded

. <0.1% error

-----

0

0.004 0.006 0.008

Normalized test error

0.002

0.01

Modeling methods

Our LASSO Least
method squares
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hypercube




MODEL COMPLEXITY

No. in- No. MIP/ MIP/ EBS/ EBS/ LASSO/ LASSO/ OLR/ OLR/
puts true DFO SLH DFO SLH DFO SLH DFO SLH
terms
2 2 2 2, 2] 2 2 6, 8] 6, 11] [12, 15] (12, 15]
2 3 3 3 3 3 [5, 12] [5, 10] [12, 14] (12, 14]
2 4 3, 4] 3, 4] 3, 4] [3, 4] 8, 11] [8, 10] [11, 12] (11, 12]
2 ) 2, 4] 2, 4] 2, 5] (2, 5] (3, 12] [4, 11] [10, 16] (10, 16]
2 6 [5, 6] 6, 6] [5, 6] (6, ©] [7,10] 6, 7] (11, 13} [11, 13]
2 7 4.6] 4,6 4,7 [47  [7,11  [6,12] (8,13  [8,13]
2 8 4, 5] 5, 6] [4, 5] [5, 6] 6, 8] [6, 9] 10, 15]  [10, 15]
2 9 4, 6] [4, 6] NA NA 6, 14] [7, 12] [10, 17] [10, 17]
2 10 4, 8] 4, 8] NA NA [5, 14] [7, 14] [10, 14] [10, 14]
3 2 2, 3] 2, 3] NA NA 6, 12] [7, 13] 27, 29] 27, 29]
3 3 3, 3] 3, 3] NA NA 8, 16] [7, 15] [19, 22] (19, 22]
3 4 4 3, 4] NA NA [10, 13] [9, 10] [16, 21] (16, 21]
3 5 5 5 NA NA [11, 17] [9, 15] [15, 23] (15, 23]
3 6 5, 6] 6, 6] NA NA [9, 18] [10, 13] [15, 26] (15, 26]
3 7 7 7, 8] NA NA [10, 22] [10, 22] 22 22
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BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

Outlet gasT Solid feed
—1
 ——
Cooling %
water —
CO, rich gas1 1CO2 rich solid outlet
e Model inputs (14 total) e Model outputs (13 total)
— Geometry (3) = Geometry required (2)
— Operating conditions (4) = Operating condition required (1)
— Gas mole fractions (2) = Gas mole fractions (2)
— Solid compositions (2) = Solid compositions (2)
— Flow rates (4) = Flow rates (2)

= OQOutlet temperatures (3)

Model created by Andrew Lee at the National Energy = Design constraint (1)
and Technology Laboratory
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ADAPTIVE SAMPLING

Progression of mean error through the algorithm

16% @
§ L 2
= 12% ‘
(4b) v
(5]
=
)
<
L 8%
©
S
£
= 4% Initial data set:
LL 137 pts
Final data set:
0% - | 261
1 3 5 7 9
Iterations

== [FGas_out - =Gas _In P e THX out == Tgas_out Tsorb_out
- =t = =gamma_out - =|p - eyir e xH20 ads_out
e XHCO3_ads_Out ====zCO2 gas out e===zH20 gas_out
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EXAMPLE MODELS

gas Solid feed

out

tE
|
 —
Cooling E
water =

coriengasp,, Yzt

Py =  1.0Pgu +0.0231 L, —0.0187 In(0.167 Ly,) — 0.00626 In(0.667 v;) —
51.1 xHCO324
Fgab
o (1.77-10719) NX? 3.46 1.17 - 10
o = 1.0 Ti‘fb—( ) - gas sorb d
" Y NXTES T3 Fsorb NX xH200
as as 975 T?’Ol'b as as as
FS% = 0.79TF&" — M (.77 F$ xCO28™ 4 0.00465 F&° Tsorb —
/}f
0.0181 F£* Tsorb xH205™
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CONCLUSIONS

* The algorithm we developed is able to model black-box
functions for use in optimization such that the models are
v Accurate

v" Tractable in an optimization framework (low-complexity models)
v Generated from a minimal number of function evaluations

e Surrogate models can then be incorporated within an
optimization framework with complex objective functions
and additional constraints

z= f(x)
min f

 ALAMO site: archimedes.cheme.cmu.edu/?g=alamo
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