Optimization of Carbon Capture Systems Using Surrogate Models of Simulated Processes

Alison Cozad¹

YoungJung Chang¹

Nick Sahinidis¹

David Miller²

¹Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA ²US DOE-National Energy Technology Laboratory, Morgantown, WV

MOTIVATION

- One-third of U.S. CO₂ emissions come from power plants and other point sources
- Available carbon capture technologies would increase electricity costs
 - Pulverized coal plants
 - Currently: 75% increase
 - Goal: <30% increase

http://www.netl.doe.gov/technologies/carbon_seq/index.html

OBJECTIVE: PROCESS SYNTHESIS

Derivative-based optimization

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) = 0 \end{array} \end{array}$

OBJECTIVE: PROCESS SYNTHESIS

- Lack of an algebraic models
- Computationally costly simulations
- Scarcity of fully robust simulations

OBJECTIVE: PROCESS SYNTHESIS

SOLID SORBENT CARBON CAPTURE

- Solid sorbent processes
 - Fast fluidized bed
 - Pneumatic conveyer
 - Moving/Fixed bed
 - Bubbling fluidized bed
- Bubbling fluidized bed
 - 1D model
 - Modeled in Aspen Custom modeler
 - Differential model
 - Uses Aspen Properties package

Andrew Lee, US DOE-National Energy Technology laboratory, Morgantown, WV

NOTATION

Independent variables, \boldsymbol{x}

- Geometry
- Operating conditions
- Inlet flow conditions

Dependent variables, \boldsymbol{z}

- Geometry required
- Operating condition required
- Outlet flow conditions
- Design constraints

SURROGATE MODEL GENERATION

SAMPLE PROBLEM SPACE

Design of experiments

- 1. Random points sampling
- 2. Factorial design
- 3. Latin hypercube design
 - Space-filling design

MODEL BUILDING

 Identify the functional form and complexity of the surrogate models

z = f(x)

• Functional form:

Expected bases

Combine simple basis functions

CategoryBasis functionPolynomial $(x_d)^{\alpha}$ Multinomial $\prod_{d=1}^{m} (x_d)^{\alpha_d}$, for m = 1, 2, ...Exponentialand $\exp\left(\frac{x_d}{\gamma}\right)^{\alpha}$, $\log\left(\frac{x_d}{\gamma}\right)^{\alpha}$ logarithmic forms $\exp\left(\frac{x_d}{\gamma}\right)^{\alpha}$

From experience, simple inspection, etc.

- Goal: Search the problem space for areas of model inconsistency or model mismatch
- More succinctly, we are trying to find points that maximize the model error with respect to the independent variables

Surrogate model

 Maximize the relative model error using a derivative-free solver (SNOBFIT):

BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

- Model inputs (14 total)
 - Geometry (3)
 - Operating conditions (4)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (4)

- Model outputs (13 total)
 - Geometry required (2)
 - Operating condition required (1)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (2)
 - Outlet temperatures (3)
 - Design constraint (1)

Progression of mean error through the algorithm

EXAMPLE MODELS

 $P_{in} = \frac{1.0 P_{out} + 0.0231 L_b - 0.0187 \ln(0.167 L_b) - 0.00626 \ln(0.667 v_{gi}) - \frac{51.1 \text{ xHCO3}_{in}^{ads}}{F_{in}^{gas}}$

$$T_{\text{out}}^{\text{sorb}} = 1.0 \, \mathrm{T}_{\text{in}}^{\text{gas}} - \frac{\left(1.77 \cdot 10^{-10}\right) \, \mathrm{NX}^2}{\gamma^2} - \frac{3.46}{\mathrm{NX} \, \mathrm{T}_{\text{in}}^{\text{gas}} \, \mathrm{T}_{\text{sorb}}^{\text{sorb}}}{\mathrm{NX} \, \mathrm{rH2O}_{\text{in}}^{\text{ads}}} + \frac{1.17 \cdot 10^4}{\mathrm{F}^{\text{sorb}} \, \mathrm{NX} \, \mathrm{xH2O}_{\text{in}}^{\text{ads}}}$$
$$F_{\text{out}}^{\text{gas}} = 0.797 \, \mathrm{F}_{\text{in}}^{\text{gas}} - \frac{9.75 \, \mathrm{T}_{\text{in}}^{\text{sorb}}}{\gamma} - 0.77 \, \mathrm{F}_{\text{in}}^{\text{gas}} \, \mathrm{xCO2}_{\text{in}}^{\text{gas}} + 0.00465 \, \mathrm{F}_{\text{in}}^{\text{gas}} \, \mathrm{T}_{\text{in}}^{\text{sorb}} - 0.0181 \, \mathrm{F}_{\text{in}}^{\text{gas}} \, \mathrm{T}_{\text{in}}^{\text{sorb}} \, \mathrm{xH2O}_{\text{in}}^{\text{gas}}$$

SUPERSTRUCTURE FLOWSHEET

SUPERSTRUCTURE FLOWSHEET

PRELIMINARY RESULTS

CONCLUSIONS

- Using the our method, we were able to link detailed simulations of solid sorbent carbon capture processes with advanced derivative-based optimization software
- The resulting set of surrogates have been used to define a superstructure model that suggests a series of two adsorbers

- For more information about,
 - The effort by the Carbon Capture and Simulation Initiative (CCSI) recently formed by the Department of Energy
 - Synthesis of Optimal Adsorptive Carbon Capture Processes. Y. Chang, et al (Given by D. Miller)
 - Tuesday, October 18, 2011: 1:20 PM, 209 A/B
 - The algorithm used to generate surrogate models
 - Learning Surrogate Models of Processes From Experiments or Simulations. A. Cozad, N. Sahinidis, D. Miller
 - Thursday, October 20, 2011: 12:30 PM, 101 I

AVOID OVERFITTING THE DATA

Increasing model complexity

HOW TO PICK THE BEST SUBSET

- Corrected Akaike Information Criterion (AICc)
 - Gives an estimate of the difference between a model and the true function

