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• One-third of U.S. CO2 
emissions come from 
power plants and other 
point sources 
 

• Available carbon capture 
technologies would 
increase electricity costs 
– Pulverized coal plants 

• Currently: 75% increase 
• Goal: <30% increase 

 
 

MOTIVATION 

http://www.netl.doe.gov/technologies/carbon_seq/index.html 
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• Simulation methods 
– Aspen Plus  

• (Amann and Bouallou, 2009) 
• (Fashami et al., 2007) 
• (Abu-Zahra et al., 2007) 
• (Alie et al., 2005) 
• (Chang and Shih, 2005) 
• (Corradetti and Desideri, 2005) 
• (Fisher et al., 2005) 
• (Alie, 2004) 
• (Freguia and Rochelle, 2003 ) 
• (Report DOE/NETL, 2002) 
• (Desideri and Paolucci, 1999) 
• (Desideri and Corbelli, 1998) 

CURRENT METHODS 
 

– HYSYS 
• (Amann and Bouallou, 2009) 
• (Oi, 2007) 
• (Singh et al., 2003) 

 

– MATLAB 
• (Mofarahi et al., 2008) 

 

–  Fortran code 
• (Tobiesen et al., 2007) 
• (Tobiesen and Svendsen, 2006) 
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• Simulation optimization methods 
– Direct 

• (Emun, Gadalla, Majozi, and Boer, 2010) 
• (Chen,  Shao, and Qian, 2009) 
• (Leboreiro and Acevedo, 2004) 
• (De Simon, Parodi, Fermeglia, and R. Taccani, 2003) 
• (Ernst, Garro, Winkler, Venkataraman, Langer, Cooney, and Sasisekharan, 1997) 

 
– Surrogate model based 

• (Henao and Maravelias, 2010) 
• (Zhou, Xinping, Kefa, and Fan, 2004) 

 

 

CURRENT METHODS 
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OVERVIEW OF THE METHOD 

Simulation 
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OVERVIEW OF THE METHOD 
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OVERVIEW OF THE METHOD 

Surrogate models of 
blocks 
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f1(x) f3(x) f2(x) 
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OVERVIEW OF THE METHOD 

Surrogate models of 
blocks 

Algebraic constraints 

Nonlinear program 

Disaggregated blocks of 
process unit(s) 

Simulation 

f1(x) f3(x) f2(x) 

Mass balances Design specs 

Algebraic model for optimization 
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Disaggregated blocks 

Independent variables, x 
•  Inlet conditions 

– Flow rates 
– Composition 
– Temperature 
– Pressure 

• Operating conditions 
• xi

l
 ≤ xi ≤ xi

u  
 

Dependent variables, z 
•  Outlet conditions 

– Flow rates 
– Composition 
– Temperature 
– Pressure 

• Other relevant conditions 
 

…
 

…
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SURROGATE MODEL GENERATION 
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Design of experiments 
1. Random points sampling 
2. Factorial design 
3. Latin hypercube design 

• Space-filling design 

 

SAMPLE PROBLEM SPACE 

Sample points 

Build model 

Adaptive sampling  
and  

Model validation 

Done 

PASS 

Add 
points 

FAIL 

x1 

x2 



Carnegie Mellon University 17 17 

• Build model for output zk 

 
 

• Basis functions Bj(z,x) 
– Explicit Bj(x) 

• Polymonial 
 

• Pairwise polynomial 
 

• Exponential and logarithmic 
• Expected basis functions 

– Implicit Bj(z,x) 
• Ex: log mean temperature difference 

 

MODEL BUILDING 

Sample points 

Build model 

Adaptive sampling  
and  

Model validation 

Done 
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Add 
points 

FAIL 
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AVOID OVERFITTING THE DATA 

Linear 

Increasing model complexity 

Quadratic Cubic 5th Order 
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Empirical error
True error

• Empirical error:  
Error between the model and the sampled data points 

• True error: 
Error between the model and the true function 

 

EMPIRICAL VERSUS TRUE ERROR 
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1. Start with a liner combination of basis functions 
d=4: 

2. Generate all possible subsets of basis functions 
 
 
 
 
 
 
 

 

3. Pick the best 

BEST SUBSET METHOD 

One term Two terms Three terms Four terms 
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1. Start with a liner combination of basis functions 
d=4: 

2. Generate all possible subsets of basis functions 
 
 
 
 
 
 
 

 

3. Pick the best 

BEST SUBSET METHOD 

One term Two terms Three terms Four terms 

 
 
 
 

2d-1 
subsets! 
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• Corrected Akaike Information Criterion (AICc) 
– Gives an estimate of the difference between a model and 

the true function 
 

HOW TO PICK THE BEST SUBSET 

Accuracy   +   Complexity 
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ADAPTIVE SAMPLING 
• Find values of x where the model is 

inconsistent 
– Maximize the relative model error using a 

black-box solver: 

Sample points 

Build model 

Adaptive sampling  
and  

Model validation 

Done 
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Add 
points 

FAIL 
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Data point 
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• Add the data points found during 
adaptive sampling to the training 
set 

• Rebuild the model 

REBUILD THE MODEL 
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• Compare the method with and without adaptive 
sampling: 
 
 
 
 
 
 

• Two sets of known equations made up of functions 
– Present in the algorithm’s basis set 
– Not present in the algorithm’s basis set 

 

TESTING MODEL GENERATION 
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Full algorithm: Single Latin 
hypercube: 



Carnegie Mellon University 29 

TESTING MODEL GENERATION 
Functions present in the basis set 

 
 
 
 
 

 
Averaged over three runs for every 

equation 

 
 
 
 
 
 
 

 
 
 
 

 
i. Pairwise polynomial with unequal 

exponents 
ii. Complex, unavailable, fractional forms 

 

iii.   
 

iv.    

Functions NOT present in the basis set 
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• Minimize stripper reboiler duty (QRB) with 90% CO2 capture 
• Base case (blue) 
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BUILDING THE CC MODEL 
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BUILDING THE CC MODEL 
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ADAPTIVE SAMPLING 

• Progression through algorithm for Block 3 
• Maximum error found can increase because the derivative-free 

solver “gets smarter” after each iteration 
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• Minimize stripper reboiler duty (QRB) with 90% CO2 capture 
• Base case (blue) 
• Optimized results (green) 
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• We developed a method to generate surrogate 
models of process simulations that  
– Are highly accurate 
– Have low complexity 
– Use minimal function evaluations 

 

• We optimized a carbon capture process with two 
primary decision variables that showed a 50% 
reduction in reboiler heat over the base case 
 

• Future work includes optimizing a carbon capture 
process integrated with a pulverized coal plant 

CONCLUSIONS 
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