

OPTIMIZATION OF CO₂ CAPTURE SIMULATIONS

Alison Cozad¹ Nick Sahinidis¹ David Miller²

¹ Chemical Engineering Department, Carnegie Mellon University, Pittsburgh, PA
² US DOE – National Energy Technology Laboratory, Pittsburgh, PA

MOTIVATION

- One-third of U.S. CO₂ emissions come from power plants and other point sources
- Available carbon capture technologies would increase electricity costs
 - Pulverized coal plants
 - Currently: 75% increase
 - Goal: <30% increase

http://www.netl.doe.gov/technologies/carbon_seq/index.html

OVERVIEW

- **1. Carbon capture process**
- 2. Method overview
- 3. Surrogate model generation
- 4. Preliminary results
- 5. Conclusions

OVERVIEW

1. Carbon capture process

- 2. Method overview
- 3. Surrogate model generation
- 4. Preliminary results
- 5. Conclusions

MEA CARBON CAPTURE PROCESS

\rightarrow Path of CO₂ through the process

CURRENT METHODS

Simulation methods

- Aspen Plus

- (Amann and Bouallou, 2009)
- (Fashami et al., 2007)
- (Abu-Zahra et al., 2007)
- (Alie et al., 2005)
- (Chang and Shih, 2005)
- (Corradetti and Desideri, 2005)
- (Fisher et al., 2005)
- (Alie, 2004)
- (Freguia and Rochelle, 2003)
- (Report DOE/NETL, 2002)
- (Desideri and Paolucci, 1999)
- (Desideri and Corbelli, 1998)

– HYSYS

- (Amann and Bouallou, 2009)
- (Oi, 2007)
- (Singh et al., 2003)

- MATLAB

• (Mofarahi et al., 2008)

Fortran code

- (Tobiesen et al., 2007)
- (Tobiesen and Svendsen, 2006)

CURRENT METHODS

- Simulation optimization methods
 - Direct
 - (Emun, Gadalla, Majozi, and Boer, 2010)
 - (Chen, Shao, and Qian, 2009)
 - (Leboreiro and Acevedo, 2004)
 - (De Simon, Parodi, Fermeglia, and R. Taccani, 2003)
 - (Ernst, Garro, Winkler, Venkataraman, Langer, Cooney, and Sasisekharan, 1997)

Surrogate model based

- (Henao and Maravelias, 2010)
- (Zhou, Xinping, Kefa, and Fan, 2004)

OVERVIEW

1. Carbon capture process

- 2. Method overview
- 3. Surrogate model generation
- 4. Preliminary results
- 5. Conclusions

OVERVIEW

- 1. Carbon capture process
- 2. Method overview
- 3. Surrogate model generation
- 4. Preliminary results
- 5. Conclusions

Disaggregated blocks

Independent variables, x

- Inlet conditions
 - Flow rates
 - Composition
 - Temperature
 - Pressure
- Operating conditions
- $x_i^l \le x_i \le x_i^u$

Dependent variables, *z*.

- Outlet conditions
 - Flow rates
 - Composition
 - Temperature
 - Pressure
- Other relevant conditions

SURROGATE MODEL GENERATION

SAMPLE PROBLEM SPACE

Design of experiments

- 1. Random points sampling
- 2. Factorial design
- 3. Latin hypercube design
 - Space-filling design

MODEL BUILDING

Build model for output z_k

$$\hat{z}_k = \sum_{j=1}^J C_{kj} B_j(z, x) + C_{k0}$$

- Basis functions $B_j(z,x)$
 - Explicit $B_j(x)$
 - Polymonial

$$x_i^{\beta}$$

- Pairwise polynomial $x_i^{\beta} x_{i'}^{\beta} = \frac{x_i}{x_{i'}}$
- Exponential and logarithmic
- Expected basis functions
- Implicit $B_j(z,x)$
 - Ex: log mean temperature difference

AVOID OVERFITTING THE DATA

Increasing model complexity

EMPIRICAL VERSUS TRUE ERROR

- Empirical error: Error between the model and the sampled data points
- True error:

Error between the model and the true function

BEST SUBSET METHOD

1. Start with a liner combination of basis functions d=4: $\hat{y} = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 \sqrt{x}$

2. Generate all possible subsets of basis functions

One term	Two terms	Three terms	Four terms
$\hat{y} = \alpha$	$\hat{y} = \beta_1 x + \alpha$	$\hat{y} = \beta_1 x + \beta_2 x^2 + \beta_3 \sqrt{x}$	$\hat{y} = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 \sqrt{x}$
$\hat{y} = \beta_1 x$	$\hat{y} = \beta_2 x^2 + \alpha$	$\hat{y} = \alpha + \beta_2 x^2 + \beta_3 \sqrt{x}$	
$\hat{y} = \beta_2 x^2$	$\hat{y} = \beta_3 \sqrt{x} + \alpha$	$\hat{y} = \alpha + \beta_1 x + \beta_3 \sqrt{x}$	
$\hat{y} = \beta_3 \sqrt{x}$	$\hat{y} = \beta_2 x^2 + \beta_1 x$	$\hat{y} = \alpha + \beta_1 x + \beta_2 x^2$	
	$\hat{y} = \beta_3 \sqrt{x} + \beta_1 x$		
	$\hat{y} = \beta_3 \sqrt{x} + \beta_2 x^2$		

3. Pick the best

BEST SUBSET METHOD

1. Start with a liner combination of basis functions d=4: $\hat{y} = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 \sqrt{x}$

2. Generate all possible subsets of basis functions

One term	Two terms	Three terms	Four terms
$\hat{y} = \alpha$	$\hat{y} = \beta_1 x + \alpha$	$\hat{y} = \beta_1 x + \beta_2 x^2 + \beta_3 \sqrt{x}$	$\hat{y} = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 \sqrt{x}$
$\hat{y} = \beta_1 x$	$\hat{y} = \beta_2 x^2 + \alpha$	$\hat{y} = \alpha + \beta_2 x^2 + \beta_3 \sqrt{x}$	
$\hat{y} = \beta_2 x^2$	$\hat{y} = \beta_3 \sqrt{x} + \alpha$	$\hat{y} = \alpha + \beta_1 x + \beta_3 \sqrt{x}$	2d 1
$\hat{y} = \beta_3 \sqrt{x}$	$\hat{y} = \beta_2 x^2 + \beta_1 x$	$\hat{y} = \alpha + \beta_1 x + \beta_2 x^2$	$>$ subsets! \leq
	$\hat{y} = \beta_3 \sqrt{x} + \beta_1 x$		ZAN
	$\hat{y} = \beta_3 \sqrt{x} + \beta_2 x^2$		

3. Pick the best

HOW TO PICK THE BEST SUBSET

- Corrected Akaike Information Criterion (AICc)
 - Gives an estimate of the difference between a model and the true function

$$AICc = n \log \left(\frac{SSE}{n}\right) + 2p + \frac{2p(p+1)}{n-p-1}$$

Accuracy + Complexity
Number of basis functions in model

- Find values of x where the model is inconsistent
 - Maximize the relative model error using a black-box solver:

- Find values of x where the model is inconsistent
 - Maximize the relative model error using a black-box solver:

- Find values of x where the model is inconsistent
 - Maximize the relative model error using a black-box solver:

- Find values of x where the model is inconsistent
 - Maximize the relative model error using a black-box solver:

REBUILD THE MODEL

- Add the data points found during adaptive sampling to the training set
- Rebuild the model

TESTING MODEL GENERATION

• Compare the method with and without adaptive sampling:

- Two sets of known equations made up of functions
 - Present in the algorithm's basis set
 - Not present in the algorithm's basis set

TESTING MODEL GENERATION

Averaged over three runs for every equation

Functions NOT present in the basis set

- *i.* Pairwise polynomial with unequal exponents
- ii. Complex, unavailable, fractional forms

iii.
$$x_i^{\beta} e^{x_i}$$

iv. $x_i^{\beta} \log x_i$

ß

OVERVIEW

- 1. Carbon capture process
- 2. Method overview
- 3. Surrogate model generation
- 4. Preliminary results
- 5. Conclusions

PRELIMINARY RESULTS

- Minimize stripper reboiler duty (Q_{RB}) with 90% CO₂ capture
- Base case (blue)

BUILDING THE CC MODEL

BUILDING THE CC MODEL

BUILDING THE CC MODEL

$$\begin{array}{rcl} \hline \text{Terms Allowed} & \text{Model for } T_{cold}^{out}, \, {}^{\circ}F \\ \hline 1 & 0.017 \left(\frac{T_{hot}^{in}}{242} \right) \left(\frac{M_{cold}}{2.3 \cdot 10^6} \right)^{-1} \\ 2 & 0.020 \left(\frac{T_{hot}^{in}}{242} \right) \left(\frac{M_{hot}}{2.0 \cdot 10^6} \right)^{-1} - 0.0021 \left(\frac{P_{cold}}{22} \right) \left(\frac{M_{hot}}{2.0 \cdot 10^6} \right)^{-1} \\ 3 & -0.0077 \left(\frac{T_{hot}^{in}}{242} \right)^2 + 0.013 \left(\frac{T_{cold}^{in}}{131} \right) \left(\frac{T_{hot}^{in}}{242} \right)^{-1} + 0.018 \Delta T_{LM} \\ 4 & 0.011 \left(\frac{T_{hot}^{in}}{242} \right)^2 - 0.052 \left(\frac{T_{cold}^{in}}{131} \right) \left(\frac{T_{hot}^{in}}{242} \right)^{-1} + 0.018 \Delta T_{LM} + 0.046 \left(\frac{T_{cold}^{in}}{131} \right)^{-1} \end{array}$$

- Progression through algorithm for Block 3
- Maximum error found can increase because the derivative-free solver "gets smarter" after each iteration

PRELIMINARY RESULTS

- Minimize stripper reboiler duty (Q_{RB}) with 90% CO₂ capture
- Base case (blue)
- Optimized results (green)

OVERVIEW

- 1. Carbon capture process
- 2. Method overview
- 3. Surrogate model generation
- 4. Preliminary results
- 5. Conclusions

CONCLUSIONS

- We developed a method to generate surrogate models of process simulations that
 - Are highly accurate
 - Have low complexity
 - Use minimal function evaluations
- We optimized a carbon capture process with two primary decision variables that showed a 50% reduction in reboiler heat over the base case
- Future work includes optimizing a carbon capture process integrated with a pulverized coal plant