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For Accelerating Technology 
Development

2

National Labs Academia Industry

Rapidly synthesize 
optimized processes 
to identify promising 

concepts

Better understand 
internal behavior  to 

reduce time for 
troubleshooting

Quantify sources and 
effects of uncertainty to 

guide testing & reach 
larger scales faster

Stabilize the cost 
during commercial 

deployment
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• Development of a Gold Standard baseline MEA model 
– Open source
– Validation framework
– Well documented
– Uncertainties quantified

• Demonstrate as a Framework for proprietary systems
– Methodology for robust, predictive models 

• Steady state validation
• Dynamic validation

Motivation
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Deficiencies in Existing Steady State Models

Luo et al., “Comparison and validation of simulation codes 
against sixteen sets of data from four different pilot plants”, 
Energy Procedia, 1249-1256, 2009 

Zhang, et al., Rate-Based Process Modeling Study of 
CO2 Capture with Aqueous Monoethanolamine
Solution, Ind. Eng. Chem Res., 48, 9233-9246, 2009

ProTreat-Optimized Gas Treating, Inc.; CO2SIM-NTNU/SINTEF
CHEMASIM-BASF SE;  AspenRatesep-modified by IFP
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Deficiencies in Existing Dynamic Models

Hanne M. Kvamsdal, Actor Chikukwa, Magne Hillestad, Ali Zakeri, Aslak Einbu, A comparison of different parameter correlation 
models and the validation of an MEA-based absorber model, Energy Procedia, 4, 1526-1533, 2011

*Data from NTNU/SINTEF 
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• Steady state model
• Dynamic model using Aspen Dynamics
• Test conditions
• Dynamic data reconciliation
• Results
• Conclusion

Outline
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• Property models
– Valid for absorber and stripper operating conditions

• Hydraulic and mass transfer models
– Developed simultaneously with relevant properties 

models using both WWC and packing data
• Steady State Validation
• Dynamic Validation

How to Develop a Gold Standard Model
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• Initial framework based upon the “Phoenix” model*
– Developed by Prof. Rochelle’s Group at UT, Austin

• Independent property models
– Viscosity
– Density/Molar Volume
– Surface Tension

• Thermodynamic framework
– Vapor-Liquid Equilibrium

• Binary MEA-H2O system
• Ternary MEA-H2O-CO2 system

– Heat Capacity
– Heat of Absorption
– Reaction Kinetics

• Model developed for consistency with reaction equilibrium 
constants

*Jorge Mario Plaza, Ph.D. Dissertation, UT Austin, May 2012

Physical Property Model Development
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• Properties (such as diffusivity, viscosity, surface tension) as well as interfacial 
area, and mass transfer coefficients all affect mass transfer

• Data from both wetted wall column and packed column considered
• In Aspen Plus, simultaneous regression of these models not possible; thus 

solution can be sub-optimal
• FOQUS has the capability of simultaneous regression

Integrated Mass Transfer Model Development
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• Final model form for hydraulics and mass transfer models:
– Pressure drop: Billet and Schultes (1999)
– Holdup: Tsai (2011)
– Mass transfer coefficients: Billet and Schultes (1993)
– Interfacial area: Tsai et al. (2012)

• Model parameters regressed for Mellapak plusTM 252Y

Integrated Mass Transfer Model Results
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Steady State Validation
CO2 Capture Prediction
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Regenerator Validation____________________________________
Lean Loading Comparison Lean Solvent Temperature Comparison
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• Capability of using a steady-
state model to generate a 
dynamic model

• Properties model are shared, 
including user models

• Absorber and regenerator can 
only be solved using an 
equilibrium assumption

• Rate-based results can be 
approximated by Murphree
efficiencies*

Aspen Dynamics

Steady-State Model

Rate-based results 
approximation

Pilot-plant equipment  
sizing and configuration

Dynamic Model*Zhang et al. “Modeling and model predictive control of a MEA-based 
post-combustion CO2 capture process”. Industrial Engineering 
Chemistry Research 2015.
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Efficiency Model

Correlated component efficiency implemented in Aspen Dynamics 

Dynamic Model Development
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Conditions
Absorber Regenerator

Max Min Max Min

Liquid flowrate (kg/h) 12961 5390 6503 4981

Gas flowrate (kg/h) 2325 2133 623 441

MEA (%w) 25.41 11.92 0.27 0.24

CO2 loading (mol/mol) 0.25 0.12 0.47 0.15

CO2 flowrate (kg/h)
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CCSI team conducted tests at NCCC
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Dynamic Test Conditions
Test# Test Condition

1 datum

2 +x% of datum

3 -x% of datum

4 +2x% of datum

5 -2x% of datum

6 +x% of datum

7 -x% of datum

8 datum

 Dynamic tests capture nonlinearity

 Persistence of excitation

 Step test conducted 
 Solvent flow (lb/hr); x1=6, datum= 12,500
 Inlet flue gas(lb/hr); x2=10, datum= 5,000
 Reboiler Steam Flow(lb/hr); x3=6, datum = 

5,000

Time periods as well as x1, x2, and 
x3 determined by conducting 
initial step tests and recording 
sensitivities in outputs
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Dynamic data can contain noisy, inaccurate and missing measurements

Challenges of Dynamic Validation

Unmeasured 
variables

Sensor bias

Measurements noise

Absorber

Regenerator

Storage tank



17

Dynamic Data Reconciliation 
• Noisy, inaccurate, and missing measurements
• Data reconciliation guarantees mass and energy conservation in 

the dynamic data

𝒎𝒎𝒎𝒎𝒎𝒎 𝒚𝒚 − 𝜼𝜼 ′𝚺𝚺−𝟏𝟏 𝒚𝒚 − 𝜼𝜼
s.t.

𝜼̇𝜼 = 𝒇𝒇 𝜼𝜼 , 𝒖𝒖, 𝜽𝜽
g 𝜼𝜼 , 𝒖𝒖, 𝜽𝜽 ≤ 𝟎𝟎
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Absorber Validation with DDR
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• Efficiency-based dynamic model captures most of 
behavior in steady state rate-based model

• Dynamic data reconciliation enables best use of noisy 
inaccurate, and missing data

• Dynamic model predicts gain & time constant of process 
• Demonstrates how dynamic data can be used for model 

validation
• Accuracy of dynamic model might allow its use for 

control applications

Conclusions
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This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

Thank you!
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Challenges for a Gold Standard Model
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Heat of Absorption Comparison

Data from: Kim et al., Energy Procedia,2014;63:1446-1455
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VLE Ternary Data Model Fit (30 wt%)
40°C 80°C

120°C



25

VLE Data Binary Data Model Fit
Txy Diagrams (data from Cai et al.)

P = 101.33 kPa P = 66.66 kPa

Pxy Diagrams (data from Tochigi et al.)

T = 363.15 kPa

Cai et al., J Chem Eng Data,1996;41:1101-1103
Tochigi et al., J Chem Eng Data, 1999;44:588-590
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NCCC vs Other Pilot Plants
CO2
Capacity 
(tpd)

Source 
of Flue 
Gas

Absorber Regenerator
Diameter 
(cm)

Height 
(m)

Diameter 
(cm)

Height 
(m)

UT, 
Austin

3.0 Non-
coal

42.7 6.1 42.7 6.1

NTNU/
SINTEF

0.3 Non-
coal

15.0 4.4 10.0 3.9

ITC,
Regina

1.0 Non-
coal

33.0 7.1 33.0 10.0

ITT, 
Stuttgart

0.3 Non-
coal

12.5 4.2 12.5 2.5

Esbjerg 
CASTOR

24.0 Coal 110.0 17.0 110.0 10.0

NCCC 
(PSTU)

10.0 Coal 64.1 18.5 59.1 12.1

Intercooler and flexibility of number of beds also differ
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Steady-State Test Runs

Operating  Conditions Range

Solvent Flow (lb/hr) 7,000-26,000

Inlet Flue Gas (lb/hr) 5,000-6,500

Reboiler Steam Flow (lb/hr) 600-2,500

Inlet FG CO2 vol% 9-11%

# of beds 1-3

Intercooler no - yes

 All possible combinations of 
different operating conditions 
tested

0.0

2.0

4.0

6.0

0 1000 2000 3000
L/

G

Reboiler Steam Flow (lb/hr)

Steady-State Test Matrix



28

Steady State Absorber Validation
CO2 Capture Prediction
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Data CO2 Capture-
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CO2 Capture-Gas Side CO2 Capture-
Liquid Side

Rich Loading

Maximum 9.19 8.09 10.84 7.36

Average 3.62 2.69 3.97 2.69

Percent Deviation Between Data and Model Values (Summary)
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Steady State Absorber Validation
No parameter tunedSample Temperature Profiles

Case K3 Case K6

Case K20

Case L/G 
(mass)

Beds/Intercooling Lean Loading 
(mol CO2/mol

MEA)

K3 1.41 3/Yes 0.091

K6 3.02 3/Yes 0.347

K20 2.38 1/No 0.075

Relative column positions of 0 and 1 correspond 
to top and bottom of column, respectively
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Steady State Regenerator Validation
Lean Loading Comparison Lean Solvent Temperature Comparison
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Regenerator Validation
No parameters tuned

Sample Temperature Profiles
Case K1 Case K9

Case Rich
Solvent 

Flow 
(kg/hr)

Reboiler Duty 
(kW)

Rich Loading 
(mol CO2/mol

MEA)

K1 7242 430.61 0.384

K9 3337 165.74 0.474

K10 3358 670.62 0.477

Case K10
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