Carbon Capture Simulation Initiative

Advanced Heat Integration Tool for Simulation-based Optimization Framework

Yang Chen^{a,b}, John Eslick^{a,b}, Ignacio Grossmann^a, David Miller^b

- a. Dept. of Chemical Engineering, Carnegie Mellon University
- b. National Energy Technology Laboratory

November 18, 2014

Simulation-Based Optimization

+ Treats simulation as black box (does not require mathematical details of model)

Easy to implement
 Easy to
 Easy to
 Easy to
 Easy to
 Easy
 Ea

+ Does not require simplification of the process model

High-fidelity models applied

+ Readily adapted for parallel computing

→ Computational time reduced

- Not well suited for problems with many variables such as heat integration, and superstructure optimization
 - Heat integration is a separate module linked to simulation-based optimization algorithm

Goal: Develop a simulation-based optimization framework with heat integration for large-scale highfidelity process models.

Simulation-Based Optimization with Heat Integration

Simultaneous

process optimization and heat integration based on rigorous process simulations are achieved in this framework

Minimum Utility Cost (Consumption)

LP Transshipment Model

$$\min \ Z = \sum_{m \in S} c_m Q_m^S + \sum_{n \in W} c_n Q_n^W$$

s.t. $R_{ik} - R_{i,k-1} + \sum_{j \in C_k} Q_{ijk} + \sum_{n \in W_k} Q_{ink} = Q_{ik}^H \quad i \in H'_k$
 $R_{mk} - R_{m,k-1} + \sum_{j \in C_k} Q_{mjk} - Q_m^S = 0 \quad m \in S'_k$
 $\sum_{i \in H_k} Q_{ijk} + \sum_{m \in S_k} Q_{mjk} = Q_{jk}^C \quad j \in C_k$
 $\sum_{i \in H_k} Q_{ink} - Q_n^W = 0 \quad n \in W_k \quad k = 1, ..., K$

- Q^S heat load of hot utility
- Q^W heat load of cold utility
- Q^H heat load of hot process stream
- Q^C heat load of cold process stream
- Q exchange of heat
- R heat residual
- c unit cost of utility
- k temperature interval
 - hot process stream
- cold process stream
- m hot utility
- n cold utility

$$R_{ik}, R_{mk}, Q_{ijk}, Q_{mjk}, Q_{ink}, Q_{m}^{S}, Q_{m}^{W} \ge 0$$
 $R_{i0} = R_{iK} = 0$

- Heat loads of the streams are calculated directly from the total change of enthalpy from the simulation results.
- Assumption: Constant heat capacity flowrates (FCps) for streams.

Papoulias SA, Grossmann IE. Comput. & Chem. Eng. 1983;7(6):707-721.

Stream with Variable FCp

• A process stream with phase change

A mixture stream of CO₂ and H₂O (CO₂: 40%, H₂O: 60%; 1kmol/hr; 1 bar)

Problems with Constant FCps

- Overestimate the heat recovery
- Infeasible heat exchanger network design

Piecewise Linear Approximation

Heat Load (MJ/hr)

• More accurate heat integration results

BERKELEY |

- Assume constant FCps in each small temperature interval
- Build a series of sub-streams with identical temperature change or heat load in process models

Lawrence Livermore

Pacific

Northwest

LABORATORY

os Alamos

EST 1943

Minimum Heat Exchanger Area

 LP Area Targeting Model (Modified from LP Transportation Model)

$$\min \frac{1}{\text{Ft}} \sum_{k=1}^{K} \sum_{l=1}^{K} \frac{1}{\text{LMTD}_{k,l}} \sum_{i \in H_k} \sum_{j \in C_l} \frac{q_{ik,jl}}{h_i + h_j}$$

1

s.t.
$$\sum_{l=k}^{K} \sum_{j \in C_l} q_{ik,jl} = Q_{ik}^{H}$$
 $i \in H_k$ $k = 1,...,K$

$$\sum_{k=1}^{l} \sum_{i \in H_k} q_{ik, jl} = Q_{jl}^{C} \qquad j \in C_l \quad l = 1, ..., K$$

- H heat load of hot stream
- Q^c heat load of cold stream
- q exchange of heat
- Ft correction factor for a non-countercurrent flow
- h stream film heat transfer coefficient
- LMTD logarithmic-mean temperature difference
- k temperature interval
- temperature interval
- hot stream
 - cold stream
- Temperature interval should be smaller than the minimum utility problem for accurate area targets.
- Number of temperature intervals: accurate results vs. CPU times.
- Double-temperature approach: HRAT & EMAT.

Jezowski JM, Shethna HK, Castillo FJL. Ind. Eng. Chem. Res. 2003;42(8):1723-1730.

Lawrence Livermore

U.S. DEPARTMENT OF

Implementation - Graphical User Interface

<u>Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS)</u>

Simulation Model (1)

FOQUS [not saved yet]													23
Session Flowsheet Uncertainty Optimization Surrogates He													
	A N	ode Edit											8>
 ★ ★ ★ BFB Heat Integration 		Variab Name: Error Code Mess	pply (les Po BFB Status e: -1 sage: Dic	Rever	rt Post Proc	Run (this no essing isible	de only fa	or testi	ng)	Stop Run]		
BFB_3ads_2rgn heat_integration	Ξ	Туре	Turbin	e	•	Model: BFB_	_3ads_2rg	n		•			
		Input	Variables				_ Inp	ut V	arial	oles			
		+	-	Tags	k		p	at t	arrar				
ACM Simulation Model			Name	Value	Unit	Category	Default	Min	Max	Description	Tags	•	Ε
*		1	adsDt	15.0	m	Fixed 🔻	15.0	0.0	0.0		[]	Ξ	
		2	adsdx	0.025	m	Fixed 🔻	0.025	0.0	0.0		[]		
		3	adslhx	0.5	m	Fixed 🔻	0.5	0.0	0.0		0		-
×		Outpu	ut Variable	s									
	+	Settin	igs										
· · · · · · · · · · · · · · · · · · ·													

Simulation Model (2)

🔆 FOQ	US [not saved yet]								
Session	n Flowsheet Uncertain	hty Optimization Surrogates	Relp						
 ★ ★ ♦ ● ≦ ≦ 	BFB_3ads_2rgn	Heat Integrati heat_integrati		Node Edit Apply Variables Pr Name: BFB Error Status Code: -1 Message: Di Model Type: Turbin Input Variables Output Variables	Revert Sition Post Pro C C C C C C C C C C C C C	Run (this no cessing Visible Model: BFB_	de only for t _3ads_2rgn	esting) Stop Rur	
\$					Name	Value	Unit	Description	Tags 🔺
				1 BFB_Co	mp_F	0.0	kmol/hr	Output stream	[]
				2 BFB_Co	mp_P	0.0	bar	Output stream	0 +
$\left \right\rangle$				•		III			۱.
	 Image: Second sec			Settings					

Heat Integration Tool (1)

K FOQUS	[not saved yet]				_						۲ĭ
Session	Flowsheet Uncertainty Optimization Surrogates Help										
		de Edit									8>
		🖌 Apply	🖊 Reve	ert	🕨 Run (thi	s node or	ly for	testing)	Stop Ru	IN	
*		Variables Pos	ition	Post P	rocessing						
\mathbf{k}	Heat Integration Model (GAMS)	Name: Heat Int	egration	•	Visible						
+		Error Status									
T		Code: -1		L.							_
0		Message: Did	not finis	n							
	BFB Heat Integration	Model			Model	haat inte	gratio	•		-	
	BFB_3ads_2rgn heat_integration	Type: Plugin			Model:	ieat_inte	yrauoi			•	
		Input Variables					eat	Inte	gration I	nputs	
Dfit /		+ -	Tag								
	EMAT (Exchanger Minimum	Name	Value	Unit	Category	Default	Min	Max	Description	Tags	
*	Approach Temperature)	→ 1 EMAT	5.0	К	Fixed 🔻	5.0	0.0	500.0	Exchanger	0	
		2 HRAT	10.0	K	Fixed 🔻	10.0	0.0	500.0	Heat recov	0	
	HRAT (Heat Recovery	3 Life.Plant	20.0	yr	Fixed 🔻	20.0	0.0	100.0	Operating li.	[]	
X	Approach lemperature)	4 Net.Po	NaN	MW	Fixed 🔻	0.0	0.0	100	Net power		
_		5 No.Stre	NaN		Fixed 🔻	0.0	0.0	500.0	Number of	. 0	
····		6 Operati	800	hr/yr	Fixed 🔻	8000.0	0.0	876	Annual ope	· D	
		7 ROR	10.0	%	Fixed 🔻	10.0	0.0	100.0	Rate of retur	n []	
		Lagrady [Nat Ca			Tee	Con	a stad		Connected	
		Legend:	NOLCO	nnecte		lea	r Coni	lected		Connected	_
		Output Variables									
4	······································	Setungs									

Heat Integration Tool (2)

QUS [not saved yet]		_		-	_		
ion Flowsheet Uncertainty Optimization Surrog	ates Help						
j	^ [Node Ed	it				
J		-	Apply 🛛 🧖 Revert 📘	🕨 Run (this noo	de only for testing) Stop Run	
		Varia	bles Position Post Pro	ocessing	1		
		Name	e: Heat Integration 🔻 🔲	Visible			
		Err	or Status				
		Co	de: -1				
		Me	Dia not finish				
	aration	Mo	del		(
BEB development of the Heat Inte			De: Pluain 🔻	Model:	neat	Integration	
BFB Heat Inte BFB_3ads_2rgn heat_inte	egration						
BFB Heat Inte BFB_3ads_2rgn heat_inte	agration	Inpu	ut Variables				
BFB Heat Inte BFB_3ads_2rgn heat_inte	egration	Inpu	ut Variables put Variables			Heat Integration Outpu	uts
BFB Heat Inte	egration	Inpu	ut Variables put Variables Tags			Heat Integration Outpu	uts
BFB Heat Inte		Inpu	ut Variables put Variables — <u>Tags</u> Name	Value	Unit	Heat Integration Outpu	uts Tags
BFB Heat Inte BFB_3ads_2rgn heat_inte		Inpu Out	ut Variables put Variables Tags Name Capital.Cost	Value 0.0	Unit SMM	Heat Integration Outpu Description Approximated capital cost for hea	uts Tags
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions	egration E	Inpu Out	ut Variables put Variables Tags Name Capital.Cost Cooling_Water.Consum	Value 0.0 0.0	Unit SMM GJ/hr	Heat Integration Outpu Description Approximated capital cost for hea Cooling water (20 C) consumptio	Tags []
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions		Inpu Out 1 2 3	ut Variables put Variables — Tags Name Capital.Cost Cooling_Water.Consum FH.Heat.Addition	Value 0.0 0.0 [0	Unit SMM GJ/hr GJ/hr	Heat Integration Outpu Description Approximated capital cost for hea Cooling water (20 C) consumptio Heat addition to feed water heaters	Tags C C C C C C C
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions Minimum Heat Exchanger Are	egration E	Inpu Out 1 2 3 4	ut Variables put Variables Tags Name Capital.Cost Cooling_Water.Consum FH.Heat.Addition Heat.Exchanger.Area	Value 0.0 0.0 [0	Unit SMM GJ/hr GJ/hr m^2	Heat Integration Output Description Approximated capital cost for hea Cooling water (20 C) consumptio Heat addition to feed water heaters Heat exchanger area	Tags C C C C C C C C C C C C C
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions Minimum Heat Exchanger Are	egration E	Inpu Out 1 2 3 4 5	ut Variables put Variables Tags Name Capital.Cost Cooling_Water.Consum FH.Heat.Addition Heat.Exchanger.Area IP_Steam.Consumption	Value 0.0 0.0 [0 0.0 0.0	Unit SMM GJ/hr GJ/hr m^2 GJ/hr	Heat Integration Outpu Description Approximated capital cost for hea Cooling water (20 C) consumptio Heat addition to feed water heaters Heat exchanger area Intermediate-pressure steam (230	Tags 0 0 0 0 0 0 0 0 0 0 0 0 0
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions Minimum Heat Exchanger Are	Egration E	Inpu Out 1 2 3 4 5 6	ut Variables put Variables Tags Name Capital.Cost Cooling_Water.Consum FH.Heat.Addition Heat.Exchanger.Area IP_Steam.Consumption LP_Steam.Consumption	Value 0.0 0.0 [0 0.0 0.0 0.0	Unit SMM GJ/hr GJ/hr m^2 GJ/hr GJ/hr	Heat Integration Outpu Description Approximated capital cost for hea Cooling water (20 C) consumptio Heat addition to feed water heaters Heat exchanger area Intermediate-pressure steam (230 Low-pressure steam (164 C) cons	Tags C C C C C C C C C C C C C
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions Minimum Heat Exchanger Are	sgration sgration sa	Inpu Out 1 2 3 4 4 5 6 7	ut Variables put Variables Tags Name Capital.Cost Cooling_Water.Consum FH.Heat.Addition Heat.Exchanger.Area IP_Steam.Consumption LP_Steam.Consumption Total.Cost	Value 0.0 0.0 [0 0.0 0.0 0.0 0.0	Unit SMM GJ/hr GJ/hr GJ/hr GJ/hr SM	Heat Integration Outpu Description Approximated capital cost for hea Cooling water (20 C) consumptio Heat addition to feed water heaters Heat exchanger area Intermediate-pressure steam (230 Low-pressure steam (164 C) cons Approximated total annualized co	Tags C C C C C C C C C C C C C
BFB Heat Inte BFB_3ads_2rgn heat_inte Utility Consumptions Minimum Heat Exchanger Are Minimum Utility Cos	sgration sgration st	Inpu Out 1 2 3 4 5 6 7 8	ut Variables put Variables Tags Name Capital.Cost Cooling_Water.Consum FH.Heat.Addition Heat.Exchanger.Area IP_Steam.Consumption LP_Steam.Consumption Total.Cost Utility.Cost	Value 0.0 0.0 (0 0.0 0.0 0.0 0.0 0.0 0.0	Unit SMM GJ/hr GJ/hr GJ/hr GJ/hr SM SM	Heat Integration Output Description Approximated capital cost for hea Cooling water (20 C) consumptio Heat addition to feed water heaters Heat exchanger area Intermediate-pressure steam (230 Low-pressure steam (164 C) cons Approximated total annualized co Utility cost	Tags C C C C C C C C C C C C C

Optimization Solver

sion	Flowshee) (1) et Uncertainty	Optimization Surrogates Help	
oble	em Solver	Run	Solver Selection	
Solv	er		\checkmark	
Sele	ect Solver OptCM	1A	▼ Description of G	
De	escription			Jurrent Solver
6	Covariacne Mat	riv Adaptation	Evolutionary Strategy (CMA-ES)	
1	This plugin makes	computation. Ad	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma	aes_inmatlab.html#python.
1 1 E	This plugin makes This code is license by the user. This p	computation. Ad use of the CMA-f ed under the Gen llugin provides a	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma ieral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be dowr wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings	aes_inmatlab.html#python. nloaded and installed seperatly
T E Solv	This plugin makes This code is license by the user. This p ver Options	computation. Ad use of the CMA-t ed under the Gen vlugin provides a	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma leral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be dowr wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings	aes_inmatlab.html#python. nloaded and installed seperatly
T E Solv	This plugin makes of This code is license by the user. This p eer Options Option	computation. Ad use of the CMA-t ed under the Gen lugin provides a Setting	Vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma leral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be dowr wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings Description	aes_inmatlab.html#python. nloaded and installed seperatly
Solv	This plugin makes of This code is license by the user. This p er Options Option upper	computation. Ad use of the CMA-t ed under the Gen vlugin provides a Setting 10.0	Vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma veral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be down wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings Description Upper bound on scaled variables (usually 10.0)	aes_inmatlab.html#python. nloaded and installed seperatly
1 2	This plugin makes This code is license by the user. This p er Options Option upper lower	computation. Ad use of the CMA-f ed under the Gen lugin provides a Setting 10.0	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma leral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be down wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings Description Upper bound on scaled variables (usually 10.0) Lower bound on scaled variables (usually 0.0)	aes_inmatlab.html#python. nloaded and installed seperatly
Solv	This plugin makes This code is license by the user. This p er Options Option upper lower seed	computation. Ad use of the CMA-f ed under the Gen llugin provides a Setting 10.0 0.0 0	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma leral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be down wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings Description Upper bound on scaled variables (usually 10.0) Lower bound on scaled variables (usually 0.0) Random number seed (0 uses clock)	aes_inmatlab.html#python. nloaded and installed seperatly
1 2 3 4	This plugin makes This code is license by the user. This p er Options Option upper lower seed itmax	computation. Ad use of the CMA-t ed under the Gen lugin provides a Setting 10.0 0.0 0	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma leral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be down wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings Description Upper bound on scaled variables (usually 10.0) Lower bound on scaled variables (usually 0.0) Random number seed (0 uses clock) Maximum number of iterations (0 go until converges)	aes_inmatlab.html#python. nloaded and installed seperatly
1 2 3 4 5	This plugin makes This code is license by the user. This p er Options Option upper lower seed itmax popsize	computation. Ad use of the CMA-t ed under the Ger llugin provides a Setting 10.0 0.0 0 0 25	vances in estimation of distribution algorithms. pp. 75-102, Springer. ES Python module version less than 1.0 provided at https://www.lri.fr/~hansen/cma ieral Public License version 2 or 3 (http://www.gnu.org/licenses/) and must be down wrapper for the CMA-ES code allowing it to work with FOQUS. Solver Option Settings Description Upper bound on scaled variables (usually 10.0) Lower bound on scaled variables (usually 0.0) Random number seed (0 uses clock) Maximum number of iterations (0 go until converges) Number of samples per iteration	aes_inmatlab.html#python. nloaded and installed seperatly

Optimization Problem Setting

ession Proble	JS - C:\FOQUS\examp Flowsheet Un	les\Heat_Inte	egration otimizatio Run C	\BFB_:	Bads_Comp_HI_SC_Opt	t_New.json - Last saved: 2014-09-15T11:03:42 📼 🖾
Deci	sion Varaibles	elect Dec	ision \	Varia	bles	
	Variable	Scale	Min	Max	Value	A
1	BFB.adsDt	Linear <	9.0	15.0	15.0	Variable Scaling Method
2	BFB.adsdx	Linear 🔻	0.0175	0.03	0.02533300626679941	(Input variables are scaled to be 0 at min and 10 at m
3	BFB.adslhx	Linear 🔻	0.25	0.55	0.41597851137042813	— Min/Max Bounds
4	BFB.adsN	Linear 🔻	4.0	15.0	15.0 <	
5	BFB.BFBadsB.Lb	Linear 🔻	2.8	4.2	3.973372501851228	Current Value (Initial Guess)
Obje	ective Function f(x)				Objective Fi	unction (Python expression)
	Express	ion	P	enalty	Scale Value for Failu	re 🗕
1	- f["Steam Cycle"]["Ne	et.Efficiency.C	CCS"] 1.	.0	1000.0	-
Ineq	uality Constraints g(x) <	<= 0	/	– In	equality Constrai	nt (Python expression enforced with penalty)
1	Expression 0.9 - f["BFB"]["remova	ICO2"] 1000	aity Fact .0	Li	rear 🔻	
					🖌 Check Input) 🔍	Variable Explorer

Case Study – A Power Plant with CO₂ Capture

Problem Statement

Objective Function: Maximizing **Net efficiency**

Constraint: CO_2 removal ratio $\ge 90\%$

Flowsheet evaluation (via process simulators) Minimum utility and area target (via heat integration tool)

Decision Variables (23): Bed length, diameter, sorbent and steam feed rates, temperatures

Case Study Results (1)

Base case w/o CCS: 650 MW _e , 42.1 % with CCS: 419.6 MW _e , 27.2 %	Simultaneous optimization and heat integration approach	Sequential optimization and heat integration approach	Optimization w/o heat integration
Net power efficiency (%)	33.8	32.2	30.5
Net power output (MW_e)	522.2	497.9	471.1
CO ₂ removal ratio (%)	90.2	90.1	90.1
Electricity consumption (MW_e)	85.2	73.8	73.8
IP steam withdrawn (GJ/hr)	0	0	0
LP steam withdrawn (GJ/hr)	768.5	1113.7	1231.9
Cooling water consumption (GJ/hr)	1820.3	1594.2	3333.6
Heat addition to feed water (GJ/hr)	562.9	467.4	0
Heat exchanger area (million m ²)	0.751	1.125	

Note: Constant FCps are assumed here and piecewise linear approximation is not used.

Optimization and heat integration significantly increased the net efficiency of the power plant with CCS.

Case Study Results (2)

Base case w/o CCS: 650 MW _e , 42.1 % with CCS: 419.6 MW _e , 27.2 %	Heat integration with constant FCps	Heat integration with variable FCps (5 segments)	w/o heat integration
Net power efficiency (%)	33.8	31.9	30.5
Net power output (MW $_{\rm e}$)	522.2	493.4	471.1
CO ₂ removal ratio (%)	90.2	90.0	90.1
Electricity consumption (MW_e)	85.2	72.0	73.8
IP steam withdrawn (GJ/hr)	0	0	0
LP steam withdrawn (GJ/hr)	768.5	1089.7	1231.9
Cooling water consumption (GJ/hr)	1820.3	1700.8	3333.6
Heat addition to feed water (MW_{th})	562.9	313.9	0
Heat exchanger area (million m ²)	0.751	0.923	

After considering variable FCps and using piecewise linear approximation of the composite curve, the net efficiency is somewhat decreased but the obtained results become much more **realistic**.

Lawrence Livermore

Conclusions

- Simulation-based optimization framework with heat integration is a suitable tool for optimization of large-scale high-fidelity process models.
- This framework can be easily implemented in the software FOQUS.
- Performance of power plant with CCS can be significantly increased by simultaneous optimization and heat integration.
- More accurate heat integration results are obtained by using piecewise linear approximation for the composite curve of process streams.

Acknowledgement

Jim Leek (LLNL) Josh Boverhof (LBNL) Juan Morinelly, Melissa Daly (CMU)

DOE: Carbon Capture Simulation Initiative (CCSI)

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government under the Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

