Carbon Capture Simulation Initiative

Tight Reformulation of Transshipment Model for Heat Integration Problems

Yang Chen^a, Ignacio Grossmann^a, David Miller^b

a. Dept. of Chemical Engineering, Carnegie Mellon University

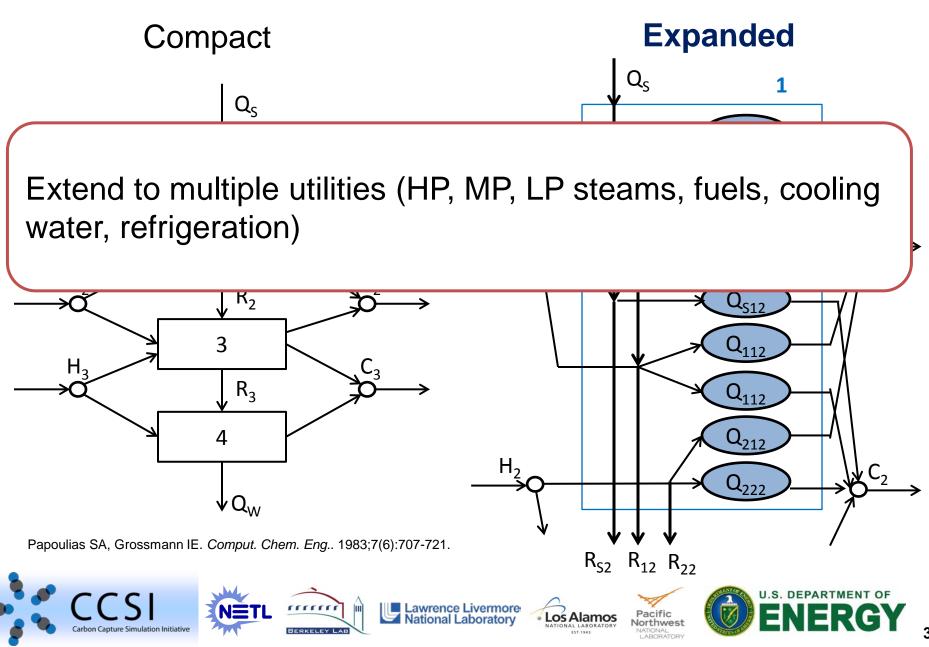
b. DOE, National Energy Technology Laboratory

November 7, 2013

Introduction

- Heat integration plays an important role to reduce energy consumption and CO₂ emissions.
- Sequential procedures to synthesize heat exchanger networks:
 - − Step 1: Minimize utility cost → LP Transshipment Model
 - Step 2: Predict optimal stream matches for minimizing the number of heat exchangers → MILP Transshipment Model
 - Step 3: Derive heat exchanger network structures for minimizing the investment cost → NLP Model
- Sequential approach is a practical way to solve large scale heat integration problems.

Goal: Study alternative approaches for solving MILP Transshipment model.



Transshipment Model

Transshipment Model Formulations

LP Transshipment Model

$$\min \ Z = \sum_{m \in S} c_m Q_m^S + \sum_{n \in W} c_n Q_n^W$$
s.t. $R_{ik} - R_{i,k-1} + \sum_{j \in C_k} Q_{ijk} + \sum_{n \in W_k} Q_{ink} = Q_{ik}^H \quad i \in H'_k$
 $R_{mk} - R_{m,k-1} + \sum_{j \in C_k} Q_{mjk} - Q_m^S = 0 \quad m \in S'_k$
 $\sum_{i \in H_k} Q_{ijk} + \sum_{m \in S_k} Q_{mjk} = Q_{jk}^C \quad j \in C_k$
 $\sum_{i \in H_k} Q_{ink} - Q_n^W = 0 \quad n \in W_k \quad k = 1, ..., K$
 $R_{ik}, R_{mk}, Q_{ijk}, Q_{mjk}, Q_{ink}, Q_m^S, Q_n^W \ge 0$
 $R_{i0} = R_{iK} = 0$

MILP Transshipment Model

$$\min \sum_{i \in H} \sum_{j \in C} y_{ij}^{p}$$

s.t. $R_{ik} - R_{i,k-1} + \sum_{j \in C_{k}} Q_{ijk} = Q_{ik}^{H} \quad i \in H'_{k}$
 $\sum_{i \in H_{k}} Q_{ijk} = Q_{jk}^{C} \quad j \in C_{k} \quad k = 1, ..., K_{q}$
 $\sum_{k=1}^{K_{p}} Q_{ijk} - U_{ij} y_{ij}^{p} \le 0$
Heat Balances
Match Constraints

$$R_{ik}, Q_{ijk} \geq 0$$

- QW heat load of cold utility
- Q^H heat load of hot process stream
- QC heat load of cold process stream
- Q exchange of heat
- R heat residual
- С unit cost of utility
- temperature interval k
- hot process stream i
- cold process stream i
- hot utility m
- cold utility n
- stream match У
- Q exchange of heat
- R heat residual
- U upper bound of heat load
- subnetwork р
- k temperature interval
 - hot stream

i

Pacific

LABORATORY

os Alamos

EST 1943

NAL LABORATO

National Laboratory

cold stream

MILP Transshipment model is difficult to solve

• Computational time increases exponentially with the problem size.

Balanced Streams

Unbalanced Streams

Case	Solution	CPU Time (s)	_	Case	Solution	CPU Time (s)
5H, 5C	24	0.5	-	5H, 5C	26	0.3
8H, 8C	35	35.9		10H, 10C	39	25.7
10H, 10C	42	1017.9		15H, 15C	55	660.1
12H, 12C	48	68688.6		17H, 17C	67	> 100000
15H, 15C	57	> 100000	_	20H, 20C	78	> 100000

Absolute Gap = 0.99

FCp: 0.8 ~ 2.8 MW/°C

Absolute Gap = 0.99

FCp: 0.1 ~ 14 MW/°C

Somewhat easier to solve!

- Reasons for slow computational speed:
 - Large LP relaxation gap
 - Unit coefficients in the objective function

Approaches to Reduce Computation

Model Reformulation

- Disaggregated Models
- Additional Integer Cuts
- Priority for Integer Variables

Model Modification

- Weighted Factors in Objective Function

Approximate Approaches

- Relative Optimality Gap
- Heuristic for Reduced MILP Model
- NLP Reformulation

Approaches to Reduce Computation

Model Reformulation

- Disaggregated Models
- Additional Integer Cuts
- Priority for Integer Variables

Model Modification

Weighted Factors in Objective Function

Approximate Approaches

- Relative Optimality Gap
- Heuristic for Reduced MILP Model
- NLP Reformulation

Disaggregated Models

Lawrence Livermore

Original Transshipment Model

$$\sum_{k=1}^{K_p} Q_{ijk} - U_{ij} y_{ij}^p \le 0, \quad \forall i \in H, \ j \in C \qquad \qquad U_{ij} = \min\left\{\sum_{k=1}^{K_p} Q_{ik}^H, \ \sum_{k=1}^{K_p} Q_{jk}^C\right\}$$

Disaggregated Transshipment Model

$$Q_{ijk} - U_{ijk} y_{ij}^{p} \le 0, \quad \forall i \in H, \ j \in C, \ k \in K \qquad U_{ijk} = \min\left\{\sum_{l=1}^{k} Q_{il}^{H}, \ Q_{jk}^{C}\right\}$$

Transportation Model

$$\begin{aligned} q_{iljk} &- U_{iljk} y_{ij}^p \leq 0, \quad \forall i \in H, \ j \in C, l \in K, k \in K \\ U_{iljk} &= \min \left\{ Q_{il}^H, Q_{jk}^C \right\} \\ &\sum_{l=1}^k q_{iljk} = Q_{ijk} \end{aligned}$$

.....

BERKELEY LAB

- y stream match
- Q, q exchange of heat
- Q^H heat load of hot process stream
- Q^c heat load of cold process stream
- U upper bound of heat load
- p subnetwork
- k, I temperature interval
- i hot stream
- j cold stream

Pacific

Northwest

os Alamos

NAL LABORA

EST 1943

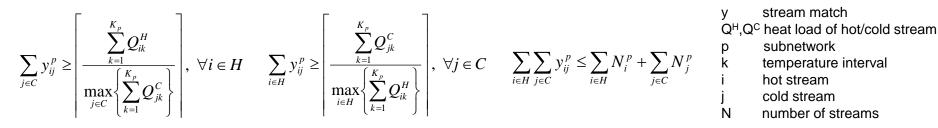
LP Relaxations of Disaggregated Models

			LP Relaxation		
Case	Solution	Original Transshipment Model	Disaggregated Transshipment Model	Transportation Model	
Balanced Str	reams				
5H, 5C	24	16.302	16.718	16.802	
8H, 8C	35	24.357	24.755	24.791	
10H, 10C	42	28.848	30.075	30.103	
12H, 12C	48	32.135	33.395	33.629	
15H, 15C	57	40.390	42.388	42.576	
Unbalanced	Streams				
5H, 5C	26	17.931	20.072	20.645	
10H, 10C	39	29.969	31.899	32.609	
15H, 15C	55	41.424	43.477	44.640	
17H, 17C	67	48.839	52.636	53.551	
20H, 20C	78	56.593	61.848	63.231	

Disaggregated models: tighter LP relaxations.

Computational Performance of Disaggregated Models

			CPU Time (s)	
Case	Solution	Original Transshipment Model	Disaggregated Transshipment Model	Transportation Model
Balanced Str	reams			
5H, 5C	24	0.5	0.5	0.4
8H, 8C	35	35.9	34.9	91.1
10H, 10C	42	1017.9	1011.4	3075.1
12H, 12C	48	68688.6	36356.6	> 100000
15H, 15C	57	> 100000	> 100000	> 100000
Unbalanced	Streams			
5H, 5C	26	0.3	0.2	0.4
10H, 10C	39	25.7	21.1	150.1
15H, 15C	55	660.1	1043.1	> 100000
17H, 17C	67	> 100000	76676.2	> 100000
20H, 20C	78	> 100000	> 100000	> 100000


Transshipment MILP model outperforms Transportation MILP model.

Disaggregated Transshipment model: shorter computational times than the original model in most of cases.

Additional Integer Cuts

		LP Relaxation				
Case	Solution	Original Tra Mo		Disaggregated Transshipment Mode		
		w/o cuts	w/ cuts	w/o cuts	w/ cuts	
Balanced Strea	ams					
5H, 5C	24	16.302	17.383	16.718	17.642	
8H, 8C	35	24.357	24.416	24.755	24.850	
10H, 10C	42	28.848	29.852	30.075	30.876	
12H, 12C	48	32.135	32.854	33.395	34.268	
15H, 15C	57	40.390	40.633	42.388	42.662	
Unbalanced St	treams					
5H, 5C	26	17.931	18.178	20.072	20.645	
10H, 10C	39	29.969	30.067	31.899	32.609	
15H, 15C	55	41.424	41.604	43.477	44.669	
17H, 17C	67	48.839	49.246	52.636	53.674	
20H, 20C	78	56.593	56.816	61.848	63.301	

Computational Performance with Additional Integer Cuts

		CPU Time (s)					
Case	Solution	•	ansshipment odel	Disaggregated Transshipment Mode			
		w/o cuts	w/ cuts	w/o cuts	w/ cuts		
Balanced Strea	ams						
5H, 5C	24	0.5	0.5	0.5	0.5		
8H, 8C	35	35.9	33.0	34.9	33.2		
10H, 10C	42	1017.9	1039.9	1011.4	878.3		
12H, 12C	48	68688.6	65506.2	36356.6	33869.2		
15H, 15C	57	> 100000	> 100000	> 100000	> 100000		
Unbalanced St	treams						
5H, 5C	26	0.3	0.3	0.2	0.3		
10H, 10C	39	25.7	16.5	21.1	30.7		
15H, 15C	55	660.1	919.2	1043.1	749.8		
17H, 17C	67	> 100000	> 100000	76676.2	28682.359		
20H, 20C	78	> 100000	> 100000	> 100000	> 100000		

Integer cuts: increase computational speed in most of cases.

rrrrr

Disaggregated Transshipment model: the best MILP formulation.

Branching Priority for Binary Variables

 y_{ij} .prior = 1/UB_{ij}

Branch y_{ii} with largest upper bound (UB_{ii}) first

		CPU Time (s)						
Case	Solution	•	nsshipment del	Disaggregated Transshipment Model				
		w/o priority	w/ priority	w/o priority	w/ priority			
Balanced Strea	ams							
5H, 5C	24	0.5	0.5	0.5	0.5			
8H, 8C	35	33.0	27.6	33.2	29.6			
10H, 10C	42	1039.9	680.0	878.3	607.0			
12H, 12C	48	65506.2	39856.9	33869.2	24400.8			
15H, 15C	57	> 100000	> 100000	> 100000	> 100000			
Unbalanced St	reams							
5H, 5C	26	0.3	0.4	0.3	0.3			
10H, 10C	39	16.5	6.9	30.7	31.3			
15H, 15C	55	919.2	648.2	749.8	1527.2			
17H, 17C	67	> 100000	> 100000	28682.359	> 100000			
20H, 20C	78	> 100000	> 100000	> 100000	> 100000			

Branching priority: improves the performance in most of cases.

Disaggregated Transshipment model with additional integer cuts and branching priority : the base model in the following studies.

Approaches to Reduce Computation

Model Reformulation

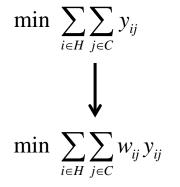
- Disaggregated Models
- Additional Integer Cuts
- Priority for Integer Variables

Model Modification

- Weighted Factors in Objective Function

Approximate Approaches

- Relative Optimality Gap
- Heuristic for Reduced MILP Model
- NLP Reformulation



Weighted Factors in Objective Function

Objective Function:

$$w_{ij} = \frac{U_{ij}}{\Delta T_{ij}}$$

hot stream

Т

- cold stream
- y stream match
- w weighting factor
- U upper bound of heat load
- ΔT mean temperature difference
- ΔT_{in} inlet temperature difference
- ΔT_{out} outlet temperature difference

$$\Delta T_{ij} = \frac{\Delta T_{\text{out},ij} - \Delta T_{\text{in},ij}}{\ln \frac{\Delta T_{\text{out},ij}}{\Delta T_{\text{in},ij}}} \qquad \Delta T_{ij} \cong \left(\Delta T_{\text{in},ij} \Delta T_{\text{out},ij} \frac{\Delta T_{\text{in},ij} + \Delta T_{\text{out},ij}}{2}\right)^{1/3}$$

Computational Performance of Weighted Model

Casa	Base	e Model	Weighted Model		
Case	Solution	CPU Time (s)	Solution	CPU Time (s)	
Balanced Streams	;				
5H, 5C	24	0.5	25	0.4	
8H, 8C	35	29.6	38	22.9	
10H, 10C	42	607.0	47	642.8	
12H, 12C	48	24400.8	53	18608.8	
15H, 15C	57	> 100000	65	> 100000	
Unbalanced Strea	ms				
5H, 5C	26	0.3	26	0.2	
10H, 10C	39	31.3	43	3.2	
15H, 15C	55	1527.2	61	145.4	
17H, 17C	67	> 100000	75	1901.0	
20H, 20C	78	> 100000	85	> 100000	

Absolute Gap = 0.99

Relative Gap = 1%

Investment Cost of Weighted Model

Minimize the investment cost of heat exchanger networks for both models in SYNHEAT, by fixing all stream matches in previous results.

		Base Model		Weighted Model				
Case	# of Heat Exchangers	Total Area (m²)	Investment Cost (\$/yr)	# of Heat Exchangers	Total Area (m²)	Investment Cost (\$/yr)		
Balanced S	treams							
5H, 5C	24	250.6	67330	25	179.0	61630		
Unbalanced	Unbalanced Streams							
5H, 5C	26	672.9	141613	26	595.3	124451		

Weighted model: smaller exchanger area and investment cost,

but possibly more stream matches.

Approaches to Reduce Computation

Model Reformulation

- Disaggregated Models
- Additional Integer Cuts
- Priority for Integer Variables

Model Modification – Weighted Factors in Objective Functi

Approximate Approaches

- Relative Optimality Gap
- Heuristic for Reduced MILP Model
- NLP Reformulation

Different Optimality Gap

C	Absolute Gap = 0.99 (Base)		Relative	e Gap = 5%	Relative Gap = 10%	
Case	Solution	CPU Time (s)	Solution	CPU Time (s)	Solution	CPU Time (s)
Balanced S	treams					
5H, 5C	24	0.5	24	0.5	24	0.5
8H, 8C	35	29.6	35	29.6	35	18.3
10H, 10C	42	607.0	42	607.0	42	187.5
12H, 12C	48	24400.8	48	24400.8	48	3877.9
15H, 15C	57	> 100000	57	> 100000	57	> 100000
Unbalance	d Streams					
5H, 5C	26	0.3	26	0.3	26	0.3
10H, 10C	39	31.3	39	31.3	40	4.5
15H, 15C	55	1527.2	55	1442.9	56	109.8
17H, 17C	67	> 100000	67	>100000	69	6414.2
20H, 20C	78	> 100000	78	>100000	78	30682.8

10% of relative gap is acceptable for most of cases.

Heuristic Approach to Solve Reduce MILP Model

- Step 1: Solve the relaxed LP model (Transshipment or Transportation).
- **Step 2**: Fix $y_{ij} = 0$ in the full MILP model if its relaxed value = 0 in the LP model. The set for these y_{ij} is defined as Y_0^{rx} . Solve the reduced MILP model (Disaggregated Transshipment).
- **Step 3**: In the full MILP model, fix all $y_{ij} \notin Y_0^{rx}$ as the solution of the reduced MILP model.
- **Step 4**: Fix one of $y_{ij} \in Y_0^{rx}$ to be 1, and leave other $y_{ij} \in Y_0^{rx}$ as variables. Solve the test MILP problem.
- Step 5: Check the value of Q_{ij} for the above y_{ij} . If $Q_{ij} = 0$, keep y_{ij} in Y_0^{rx} . If $Q_{ij} > 0$, remove y_{ij} from Y_0^{rx} .
- **Step 6**: Relax the above y_{ij} to variable. Go to the next y_{ij} .
- **Repeat** Step **4 6** for every $y_{ij} \in Y_0^{rx}$.
- Step 7: Fix $y_{ij} = 0$ for all $y_{ij} \in Y_0^{rx}$ in the full MILP model. Solve the final reduced MILP model (Disaggregated Transshipment) and obtain the approximate solution.

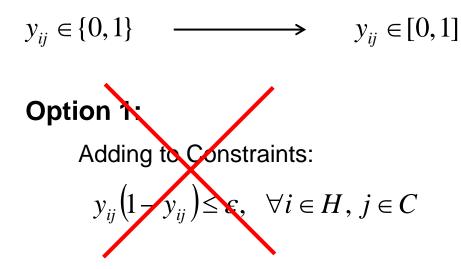
Lawrence Livermore National Laboratory

Heuristic for Reduced MILP Model

Full Model (Base) Case		Reduced Model by LP Relaxation of Original Transshipment Model		Reduced Model by LP Relaxation of Disaggregated Transshipment Model		Reduced Model by LP Relaxation of Transportation Model		
	Solution	CPU Time (s)	Solution	CPU Time (s)	Solution	CPU Time (s)	Solution	CPU Time (s)
Balanced S	Streams							
5H, 5C	24	0.5	25	2.8	24	2.9	24	2.8
8H, 8C	35	29.6	35	8.6	35	6.4	36	6.6
10H, 10C	42	607.0	44	8.0	43	92.0	43	68.8
12H, 12C	48	24400.8	51	168.7	48	348.2	48	1121.7
15H, 15C	57	> 100000	58	> 100000	59	> 100000	59	> 100000
Unbalance	d Streams	;						
5H, 5C	26	0.3	26	2.4	26	2.4	26	2.7
10H, 10C	39	31.3	42	4.3	41	4.5	41	5.9
15H, 15C	55	1527.2	61	9.9	56	147.0	55	521.9
17H, 17C	67	> 100000	72	52.2	70	23645.9	70	10157.0
20H, 20C	78	> 100000	86	63.9	79	> 100000	82	> 100000

Reduced MILP models: Good approximate solutions CPU times reduced by at least one order of magnitude

Lawrence L



NLP Reformulation

Option 2:

Objective Function:

$$\sum_{i \in H} \sum_{j \in C} y_{ij} + K \sum_{i \in H} \sum_{j \in C} y_{ij} \left(1 - y_{ij} \right)$$

Computational Performance of NLP Model

Case	MILP Mo	odel (Base)	NLP Model		
Case	Solution	CPU Time (s)	Solution	CPU Time (s)	
Balanced Streams	5				
5H, 5C	24	0.5	26	82.0	
8H, 8C	35	29.6	39	233.6	
10H, 10C	42	607.0	48	202.5	
12H, 12C	48	24400.8	53	458.5	
15H, 15C	57	> 100000	70	1291.9	
Unbalanced Strea	ms				
5H, 5C	26	0.3	26	81.9	
10H, 10C	39	31.3	46	864.8	
15H, 15C	55	1527.2	66	1242.7	
17H, 17C	67	> 100000	79	1674.1	
20H, 20C	78	> 100000	95	14804.0	

NLP Solver: OQNLP

NLP Models: Faster but worse solutions

Lawrer

Conclusions

- MILP Transshipment model is computational expensive for largescale problems.
- Disaggregate Transshipment model is the best formulation for most of case studies.
- Additional integer cuts and branching priority for binary variables are helpful to improve computational performance.
- Weighted factors can be added into the objective function to reduce solution times and obtain designs with lower investment costs.
- An appropriate relative optimality gap (10%) can be used to get near-optimal solutions in relatively short times.
- Reduced MILP models obtained by a heuristic approach achieves near-optimal solutions while reducing solution times by at least one order of magnitude.
- NLP formulations obtained approximate solutions in relatively short times.

Acknowledgement

DOE: Carbon Capture Simulation Initiative (CCSI)

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government under the Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

