Carbon Capture Simulation Initiative

Simulation-Based Optimization Framework with Heat Integration

Yang Chen^a, John Eslick^a, Ignacio Grossmann^a, David Miller^b

- a. Dept. of Chemical Engineering, Carnegie Mellon University
- b. DOE, National Energy Technology Laboratory

November 6, 2013

Tools to Develop an Optimized Process using Rigorous Models

Simulation-Based Optimization

+ Treats simulation as black box (does not require mathematical details of model)

Easy to implement
Easy to
Easy to
Easy to
Easy to
Easy
Ea

+ Does not require simplification of the process model

High-fidelity models applied

+ Readily adapted for parallel computing

Computational time reduced

- Not well suited for problems with many variables such as heat integration, and superstructure optimization
 - Heat integration is a separate module in optimization Superstructure optimization pre-determines best topology

Goal: Develop a simulation-based optimization framework with heat integration for large-scale highfidelity process models.

Simulation-Based Optimization Framework

Problem Definition File (Session File)

Optimization Settings

Black-Box optimization parameters, bounds, variable scaling

Model Settings

- Define input and output variables for simulations
- Specifies simulation files and metadata

Meta-Flowsheet

Connect Multiple simulations and calculations

Lawrence L

Recycle loops are allowed

Optimization Engine

Derivative-Free Optimization Methods

• CMA-ES

- Covariance Matrix Adaptation Evolution Strategy
- For difficult non-linear non-convex optimization problems in continuous domain
- SNOBFIT
 - Stable Noisy Optimization by Branch and FIT
 - For the robust and fast solution of noisy optimization problems with continuous variables
- Global-OPT (DOES)
 - Uses design of experiments to determine the global optimum
 - Can optimize smooth and not-smooth, continuous and discrete variable problems

Software Integration

Graphic Interface

Meta-Flowsheet Editor

Node (a model run on Turbine or Python code)

Information Flow

Optimization Problem Setting

Optimization Monitor

Start Stop Settings Update delay (ms): 500 Optimization Solver Messages Image: Solution Solver Messages Image: Solution Solver Messages Iteration 98 Complete, Total Elapsed Time: 12398.48464 \$, Objective: 123.848215112 Image: Solution Solver Messages Image: Solution Solver Messages Elapsed Time: 124207.820292 sec Image: Solution Solver Messages Image: Solution Solver Messages Image: Solution Solver Messages Best Objective: 123.835078636 Image: Solution Solver Messages Image: Solution Solver Messages Image: Solution Solver Messages Solution Image: Solver Messages Image: Solver Messages Image: Solver Messages Solution Image: Solver Messages Image: Solver Messages Image: Solver Messages Solution Image: Solver Messages Image: Solver Messages Image: Solver Messages Best Input Values (scaled): [7.26782531 0. 8.2443637 0. 8.20382187 7.77744506 0. 0. 9.47420122 3.74398661 2.53478767 0. 8.6005703 8.8682513 4.17166971 0.51371151] Image: Solver Messages Image: Solver Messages 1.18422604e+01 1.12443920e+01 3.15487027e+00 5.00000000e-02 Image: Solver Messages Image: Solver Messages Interation 99: 100/100 Err: 11 TOTAL Complete: 10000 Err
Clear BEB right Alue BFB Solidin Fm BFB Sol

13

Simulation-Based Optimization with Heat Integration

Heat Integration Interface

FOQUS	51													
		Node E	dit											
► 1 · · · · ·		-	Apply		<u>/ert</u>									
		Calculation Error Code (0 = okay): -1												
	Heat integration inputs	Nar	me: Heat Inte	egration										
		Mod	Model: Heat Integration											
		x:	x: -200.0 y: 0.0 z: 0.0											
)		Ir	nput Variables											
)	Minimum temperature	7	Name	Value	Unit	C	ategory	Default	Min	Max	Description		Tags	+
	difference	->	1 Hrat	10.0	к	Fixed		10.0	0.0	500.0	Minimum approach temperatu	re	0	_
		:	2 Max.Time	60.0	second	Fixed		60.0	0.0	10000.0	Maximum allowable time for h	eat integration	0	
			3 Net.Power	null	MW	Fixed		0.0	0.0	1000.0	Net power output without CCS		0	
	Heat integration outputs													
		Z	utput variable	s			11.5					-		
	Utility consumptions		1 Cooling V	Name		Value	Unit	Des		Des	cription	n		T
			2 El Ulast Addition				Cl/bal Llast addition to food water better					u n		-
			2 FH.Heat.Addition			nuli	GJ/nr Heat addition to reed water neaters				U	=		
			3 HP_Steam.Consumption		null	GJ/nr Hign-pressure steam (230 C) consumption (Cost: \$8		consumption (Cost: \$8.04/GJ)	U					
	# of heat exchangers		4 MP_Steam.Consumption null GJ/hr Medium-pressure steam (164 C) consumption (Cost: \$6.25/G) []					
			5 Min.No.HX null None Minimum nun					number of heat exchangers			0			
•		6 Utility.Cost		t		null	\$/hr Tota	utility cos	t			[]	Ŧ	

Case Study

Case Study Results

Objective Function: Maximizing Net Efficiency

Constraint: CO_2 Removal Ratio $\ge 90\%$

	Net Efficiency (%)	CO ₂ Removal Ratio (%)
w/o CCS		
Base Case	42.1	0.0
with CCS but w/o Heat Integratio	n	
Base Case	26.7	91.3
Optimal Solution	28.6	90.9
with CCS and Heat Integration		
Base Case	28.7	91.5
Optimal Solution	29.9	91.0

Optimization and heat integration significantly increased net efficiency of power plant with CCS.

Software: FOQUS

<u>Framework for Optimization and</u> <u>Quantification of Uncertainty and</u> <u>Sensitivity</u>

- Builds on Sinter and the Turbine Gateway
- Common framework for model execution
 - simulation based optimization
 - uncertainty quantification (UQ)
 - steady state reduced model building (coming soon)

More information: https://www.acceleratecarboncapture.org

Conclusions and Future Work

Conclusions

- Simulation-based optimization framework is a suitable tool for optimization of large-scale high-fidelity process models.
- Multiple simulation and optimization software are incorporated so that different units or subsystems in the process can be modeled in different simulators.
- Performance of power plant with CCS can be significantly increased by optimization and heat integration.

Future Work

- Add more process simulators and optimization solvers into the framework.
- Allow parallel computing for heat integration.

Acknowledgement

Jim Leek (LLNL) Josh Boverhof (LBNL) Juan Morinelly, Melissa Daly (CMU)

DOE: Carbon Capture Simulation Initiative (CCSI)

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government under the Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

