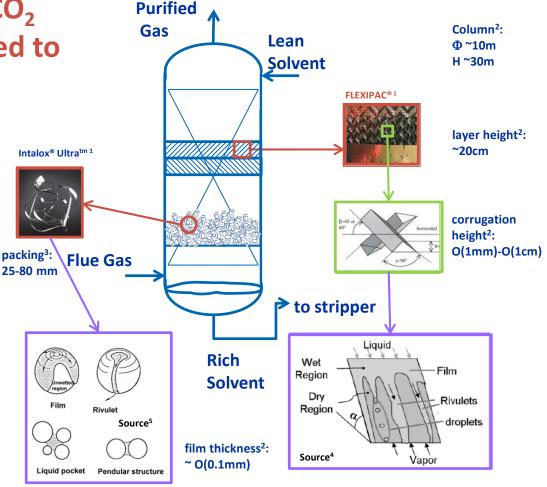


Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle

Janine Carney and Rajesh Singh

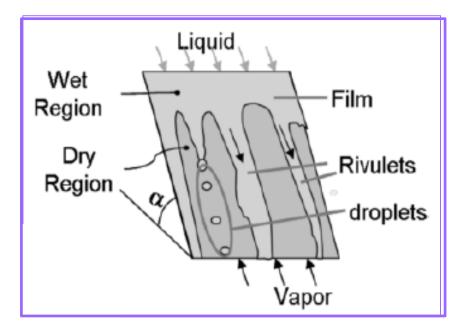
Multiphase Flow Science Workshop

August 5-6, 2014



CFD Modeling of Solvent Absorption

Motivation: efficiency of CO₂ absorption is closely related to local flow behavior


Challenges:

- Cannot model entire column focusing in on all physical phenomenon
- Multi-scale approach required
- Suitable closure models for interphase interactions have not been developed

Liquid Films

Method: Volume of Fluid Simulations

Features depend upon various flow parameters and liquid properties

Current Goal: study the impact of solvent properties, contact angle, flow rates, inclination angle on hydrodynamics

- film thickness
- wetted area
- interfacial area
- flow regime

Volume of Fluid (VOF)¹ Multiphase Model

Governing Equations

 Continuity and momentum equation of average phase

 $\nabla \cdot \mathbf{u} = 0$

$$\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) = -\nabla P + \nabla \cdot \tau + \rho \mathbf{g} + \mathbf{F}$$

$$\rho = \rho_G \varepsilon_G + \rho_L \varepsilon_L \qquad \mu = \mu_G \varepsilon_G + \mu_L \varepsilon_L$$

Stress : turbulence neglected

 $\boldsymbol{\tau} = -\boldsymbol{\mu} \Big(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \Big)$

Transport equation for volume fraction

$$\frac{\partial \varepsilon_L}{\partial t} + \mathbf{u} \cdot \nabla \varepsilon_L = 0$$

$$\varepsilon_L + \varepsilon_G = 1$$

Interfacial forces

- Force at interface resulting from surface tension

Challenges

- preserving a sharp boundary between immiscible fluids
- computations of surface tension

Computation of Interfacial Force

Surface tension force acts only at surface and is required to maintain equilibrium

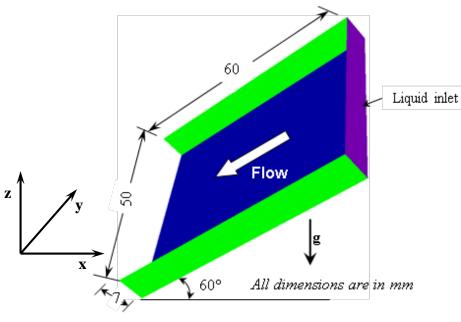
- balances inward intermolecular attractive force with outward pressure gradient force
- minimizes free energy by decreasing area of interface

figure¹

Other techniques

are available²

Continuum surface force model – Brackbill et al., J. Comput Phys., (1992):

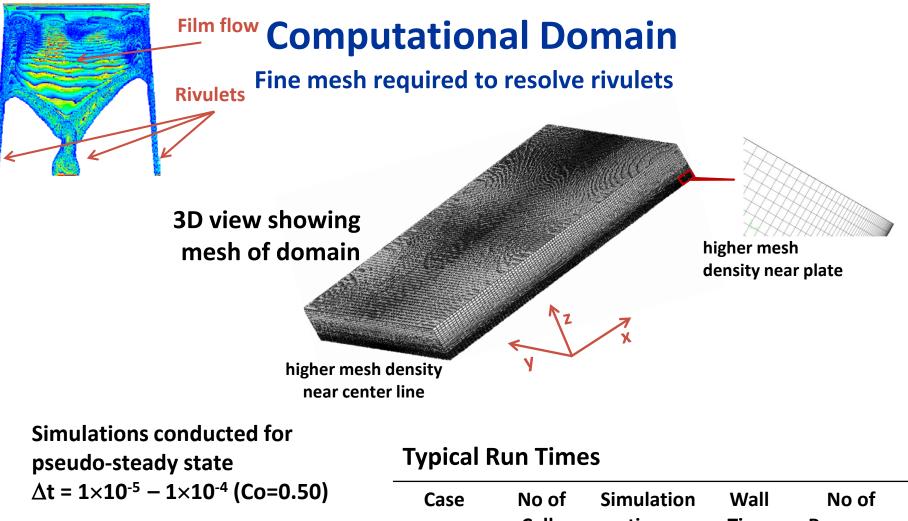

- Force at surface expressed as volume force using divergence theorem

$$\mathbf{F} = \sigma \frac{\rho \kappa \nabla \varepsilon_G}{0.5(\rho_L + \rho_G)} \qquad <= \text{For two phase flow}$$

- Surface curvature is computed from local gradients in the surface normal to the interface
- Effects of wall adhesion at fluid interfaces in contact with boundaries is also estimated within the CSF model

The contact angle that the fluid is assumed to make with the wall is used to adjust the surface normal in cells near the wall

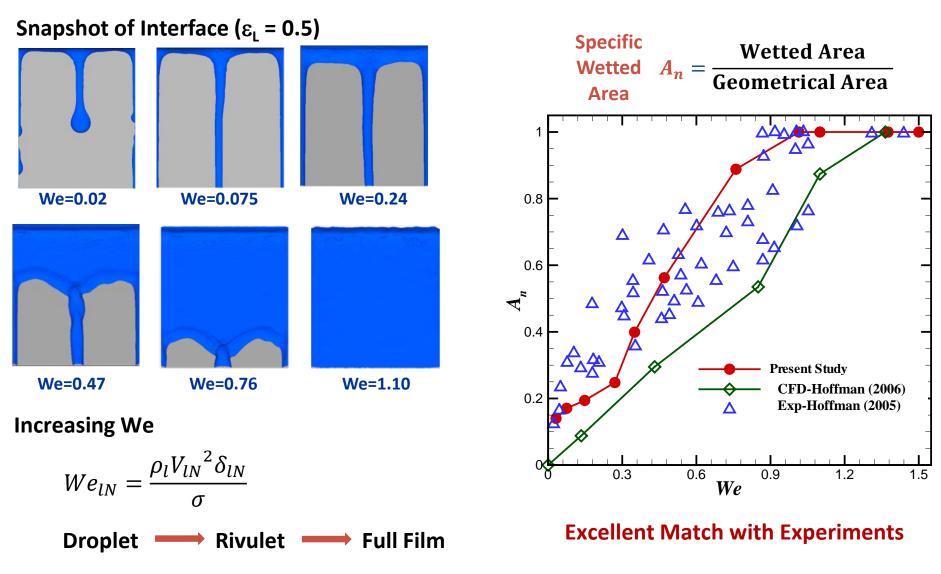
Liquid Film Down Inclined Plate


Inlet: constant velocity (through plane) Outlet: pressure (0 Pa) Plate: smooth wall (no slip) Sides: smooth walls (no slip) Top: pressure outlet (0 Pa)

Base	case

1.05x10 ⁻⁶	≤Q _{in} ≤	1.05x10 ⁻⁵ kg/m ³
0.003	≤ v _{in} ≤	0.03 m/s
0.03	≤ We _N ≤	≤ 1.49
23.5	≤ Re _N ≤	235

Physical Properties	Air	Water
Density $ ho$ (kg/m ³)	1.185	997
Viscosity μ (Pa.s)	1.831x10 ⁻⁵	0.8899x10 ⁻³
Surface Tension σ (N/m)	-	0.0728
Static contact angle with air-steel $\gamma(^{\circ})$	70	



Fails to correctly predict		Cells	time	Time	Processor
flow behavior	Coarse	500K	2 s	24hrs	32
Number of elements: 1.15M*	Fine 1	1.12M	2s	48 hrs	128
(Literature: 1.0 – 1.5M elements)	Fine 2	1.37M	2s	48 hrs	128

Comparison with Experiments

Impact of inertia on flow transition & wetted area

Effect of Solvent Properties on Hydrodynamics

- Film thickness
- Wetted area
- Interfacial area

- Kapitza Number only depends on fluid properties
- Fixed for each solvent
- Independent of flow rate

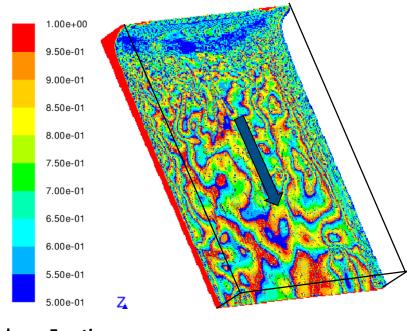
$$\mathbf{K}\mathbf{a} = \sigma_l \left(\frac{\rho_l}{g\mu_l^4}\right)^{1/3}$$

■ Low Ka ↔ high solvent viscosity

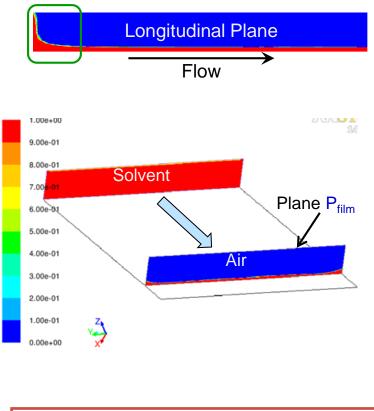
Solvent	μ _l (Pa-s)	ρ _l (kg/m³)	σ _l (N/m)	v_{l}	Ка
Water	0.00089	997.0	0.07280	8.92578E-07	3969.04
30% MEA	0.00252	1013.0	0.05480	2.48766E-06	749.71
26.7% AMP	0.00270	995.80	0.04301	2.71136E-06	533.65
40% MEA	0.00371	1015.3	0.05500	3.64917E-06	450.42
0.075m MPZ	0.00556	1005.3	0.05442	5.53489E-06	258.27
48.8% MDEA	0.00925	1016.6	0.04756	9.09896E-06	116.60
0.51m MPZ	0.01336	946.41	0.03437	1.41165E-05	49.72
0.41m MPZ	0.02348	962.20	0.03589	2.44022E-05	24.62
0.31m MPZ	0.03642	981.31	0.03840	3.71137E-05	14.77

Flow rate computation

$$Q = W \left(\frac{3We^3}{g\sin\alpha}\right)^{0.2} \left(\frac{\mu_l}{\Delta\rho}\right)^{0.2} \left(\frac{\sigma_l}{\rho_l}\right)^{0.6}$$


- Q_{I} = liquid flow rate
- We = Weber number
 - W = Width of plate
 - ρ_{I} = density of liquid
 - $\Delta \rho = \rho_{\rm l} \rho_{\rm g}$
 - μ_{I} = viscosity of liquid
 - σ_{I} = surface tension of liquid
 - g = gravitational acceleration

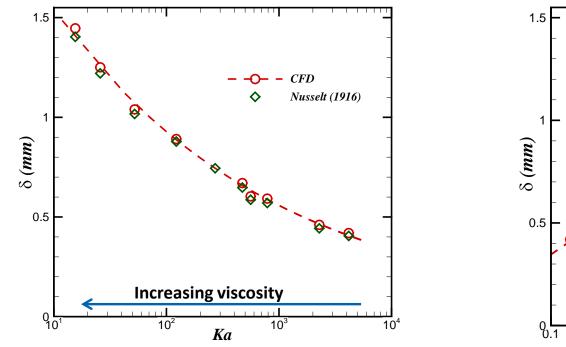
Film Thickness for Fully Wetted Plate


Fixed Q = 1.053×10⁻⁵ m³/s

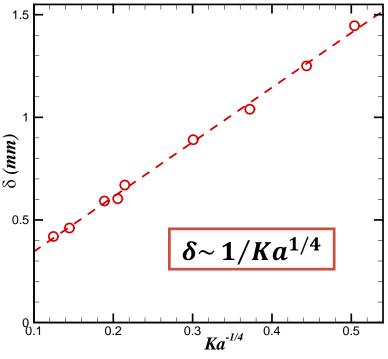
To yield fully wetted plate

Volume Fraction of Water

Snapshot of liquid and gas distribution in the central xz-plane



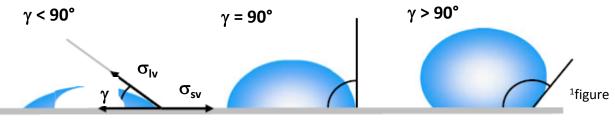
 $\delta = \frac{\text{Entrained area of Solvent in } P_{film}}{\text{Width of plate}}$



Film Thickness for Fully Wetted Plate Impact of solvent properties

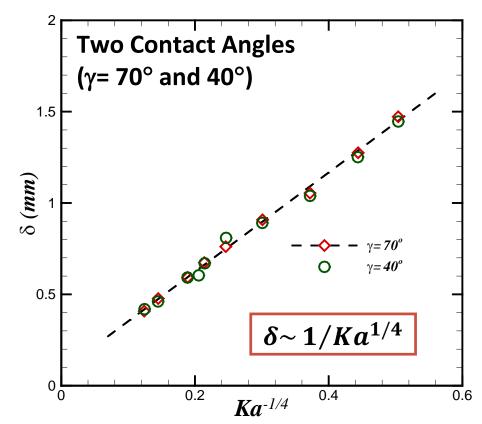
δ decreases with increase Ka

Excellent agreement with Nusselt theory

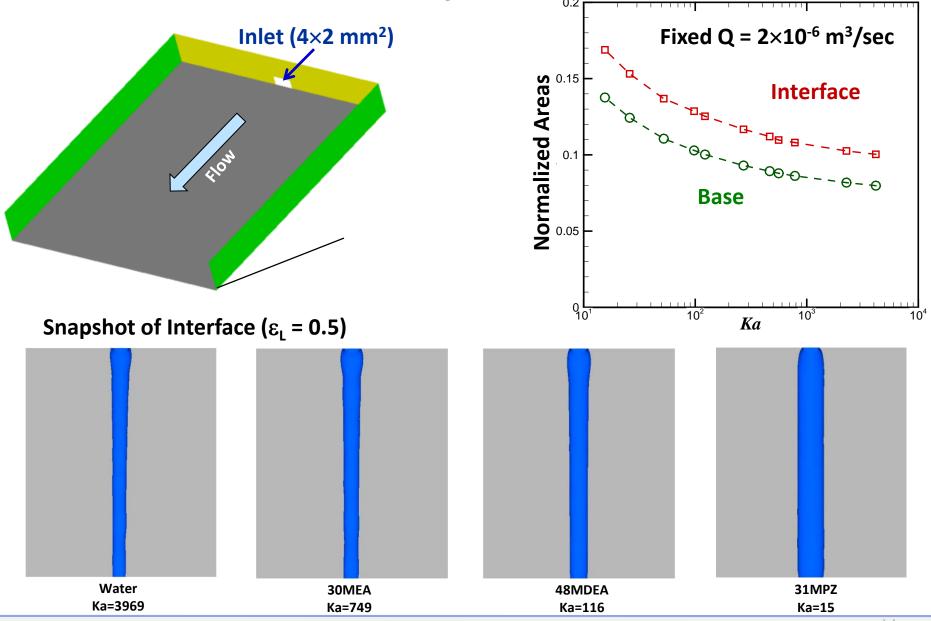


Flow rate:

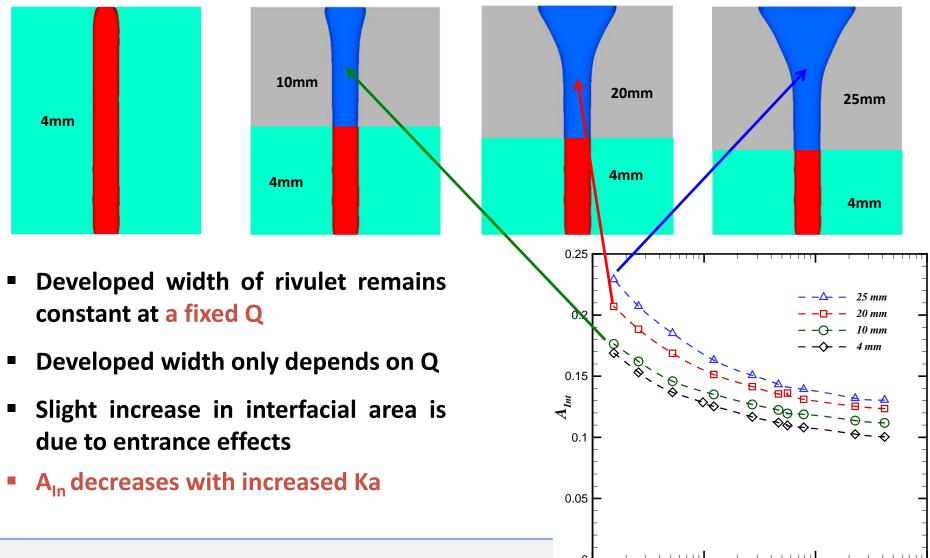
$$\delta \sim Q^{1/3}/Ka^{1/4}$$


Film Thickness for Fully Wetted Plate Impact of contact angle

 σ_{sl}

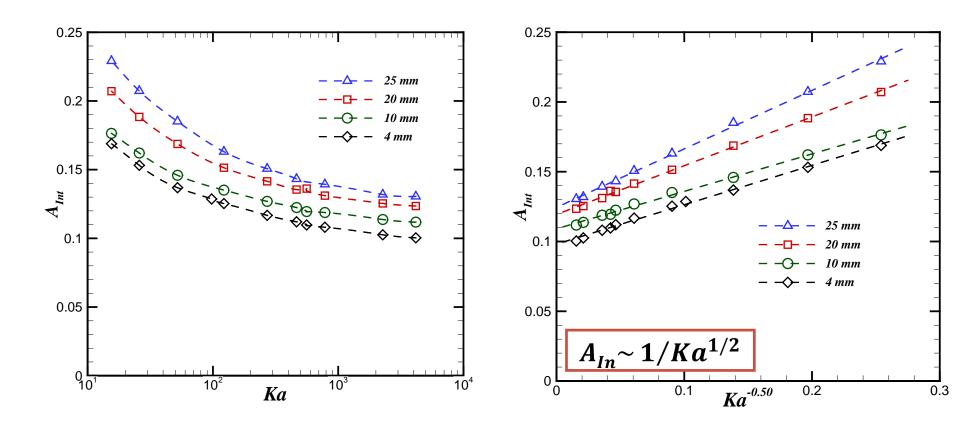

- Characteristics of solid-liquid system in specific environment
- Dictates the wetting behavior of solvent
- Film thickness unaffected by contact angle for fully wetted plate

What about for partially wetted plate?


Modified Setup for Rivulet Flow

Interfacial Area for Rivulet Flow Impact of inlet size and solvent property

Interface at ε_{L} = 0.5 for 0.31m MPZ (Ka=15)

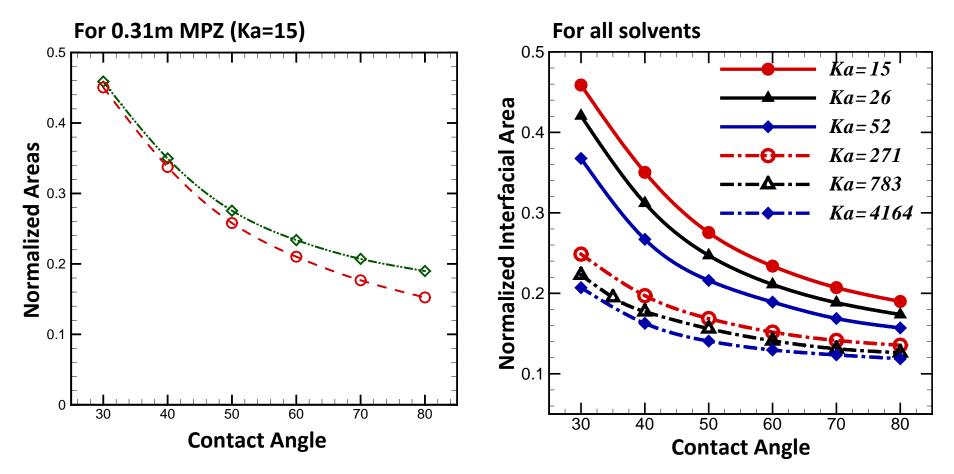

 10^{2}

 10^{3}

Ka

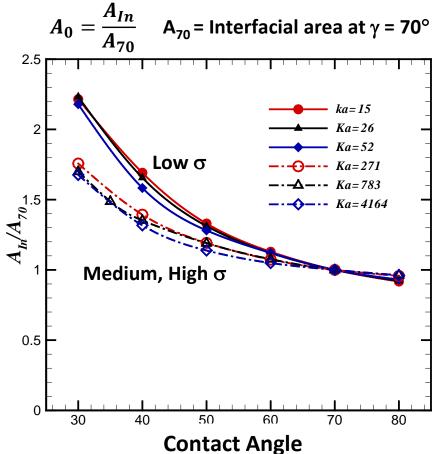
10

Interfacial Area for Rivulet Flow Impact of inlet size and solvent property



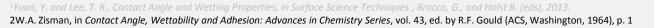
Flow rate:

$$A_{In} \sim Q^{1/3} / Ka^{1/2}$$


Wetted/Interfacial Areas for Rivulet Flow Impact of contact angle

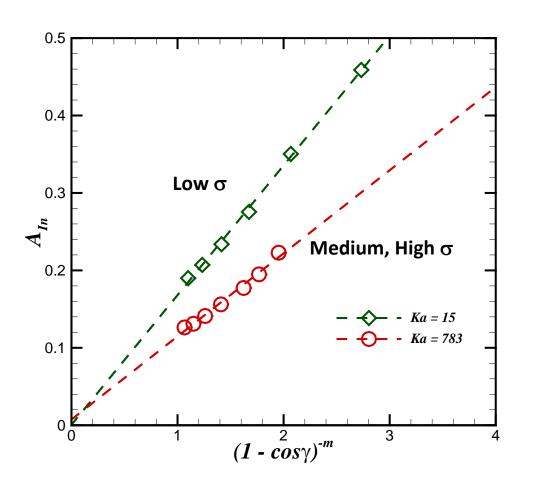
- Wettability decreases with increased γ
- Impact is greater on wetted area
- Leads to increase in δ with increased γ

Re-normalized Interfacial Areas for Rivulet Flow Impact of contact angle



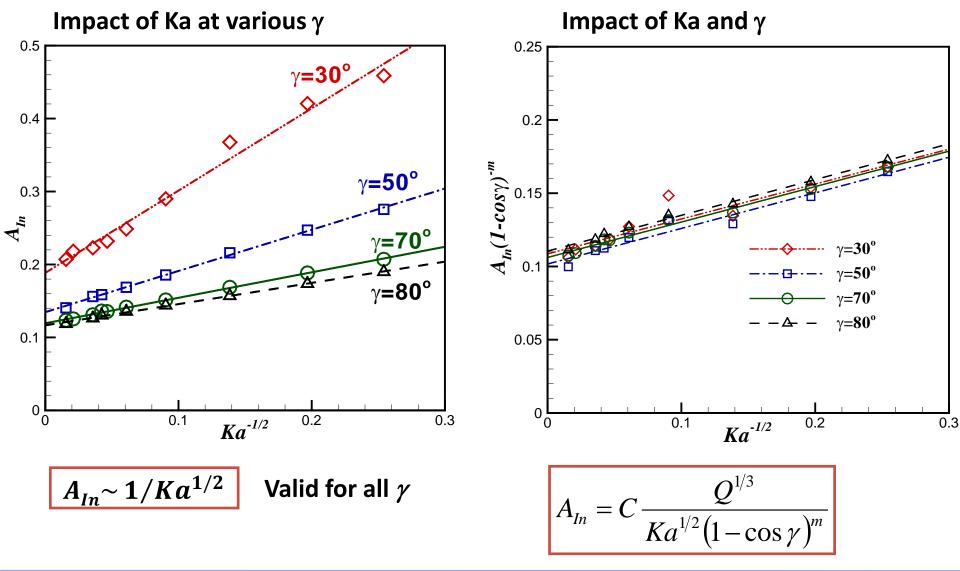
Pioneering work of Zisman and coworkers¹ found²:

- For given solid, contact angle
 (γ) does not vary randomly
 with liquid
- The change of cos γ vs surface tension (σ) falls in a linear trend
- Lower values of σ corresponds to smaller γ


Two regimes are evident for

- Low σ (< 50 mN/m)
- Medium & High σ (>50 mN/m; 70 mN/m)

Interfacial Area for Rivulet Flow Impact of contact angle


Areas scale as $A \sim 1/(1 - \cos \gamma)^m$

Interfacial Area (A_{In})
 m = 0.50 σ < 50mN/m
 = 0.33 ≥ 50mN/m

Wetted Area
$$(A_n)$$

 $m = 0.60 \quad \sigma < 50 \text{mN/m}$
 $= 0.45 \quad \geq 50 \text{mN/m}$

Interfacial Area for Rivulet Flow

Summary & Conclusions

- Multiphase flow VOF simulations can be used to explore film flow down a plate
- Results presented in terms of the Kapitza number
- Scaling relations were obtained to describe impact of solvent properties and contact angle on interfacial area
 - Full Film Flow:
 - Film thickness decreases with increase Ka
 - Rivulet Flow:
 - Wetted/Interfacial areas decrease with increased Ka
 - Wetted/Interfacial areas decrease with increased γ
 - Work in progress
 - Identifying critical We for flow regime transition
 - Impact of varying inclination angle

 $Ka = \sigma_l \left(\frac{\rho_l}{g\mu_l^4}\right)^{1/3}$

 $\delta \sim Q^{1/3}/Ka^{1/4}$

 $A = C \frac{Q^{1/3}}{Ka^{1/2} (1 - \cos \gamma)^m}$

Disclaimer of Liability/Endorsement

This work is made available by an agency of the United States Government. Neither the United States Government, the Department of Energy, the National Energy Technology Laboratory, nor any of their employees, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government, the Department of Energy, or the National Energy Technology Laboratory. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, the Department of Energy, or the National Energy Technology Laboratory. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, the Department of Energy, or the National Energy Technology Laboratory, and shall not be used for advertising or product endorsement purposes.