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1. Introduction 

In order to use the information and predictions generated by the Carbon Capture Simulation Initiative 

(CCSI) Toolset with confidence, it is critical that the physical and mathematical models are continually 

and methodically validated with experimental data at various scales, and uncertainties in the modeling 

process are characterized and quantified. This document outlines a plan for CCSI validation and 

Uncertainty Quantification (UQ) of the Element 2 models to identify and quantify the computational fluid 

dynamics (CFD) simulation errors measured in relation to experimental data and to provide a quantitative 

assessment of uncertainties. 

Because of the infeasibility of designing and conducting validation experiments on the full-scale carbon 

capture systems, we will follow a systematic and hierarchical approach in designing physical experiments 

(and/or utilizing available measurement data sets) for comparison with predictive computational models. 

This approach will divide the complex utility scale solid sorbent carbon capture system into several 

progressively simpler tiers: pilot scale cases, laboratory scale cases, and unit problems, as illustrated in 

Figure 1. 

This layered strategy will incorporate uncertainty in both parameters and models to assess how accurately 

the computational results compare with the experimental data for different physical phenomena coupling 

and at different geometrical scales. The validation and UQ efforts will be supported by experimental data 

from a variety of sources, including the U.S. Department of Energy (DOE), National Energy Technology 

Laboratory (NETL) facilities and NETL-supported industrial experiments at external locations (DOE-

NETL Industrial Challenge Problems) as well as available literature data. The plan for the integrated 

validation and UQ activities for CCSI CFD modeling and simulations is based on the expertise and 

experience of the CCSI team members as well as their state-of-the art knowledge of basic concepts, 

principles, and procedures (Oberkampf 2010, Roy 2011, Roache 1998, Grace 2004, and AIAA 1998). 
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2. Overview 

The CCSI CFD development work, which is focused on the specific multi-physics of the carbon capture 

systems of interest to CCSI and the capabilities of the models and codes, needs to be supported by a 

quantitative assessment of the confidence in the predictions. The contributing elements in the 

development of a computational predictive capability for the CFD models and simulations are 

verification, validation, and UQ. While many types of models (1-dimensional, reduced order, process 

models, etc.) are being developed for the CCSI Toolset, validation efforts will focus mainly on the CFD 

models. The other models can then be validated against (or calibrated to) those validated models. This 

will ultimately allow the fundamental, validated physics-based models to be used to improve the other 

CCSI models. 

Verification addresses the correctness and functionality of the computations and denotes the process of 

establishing the precision of the numerical solution of the computational model in comparison to the 

accurate solutions. The verification process may be divided into two areas: code verification and 

numerical solution verification. The CCSI CFD researchers are developing their models and codes in an 

open-source multiphase flow computer code MFIX. MFIX has been developed by employing appropriate 

software engineering practices and has been subjected to software verification process in several studies. 

We can thus assume that the major features of the provided general-purpose MFIX computer code have 

been verified and are an accurate computational representation of the original mathematical models.  

Numerical solution verification starts after the particular model has been embodied in a verified code, the 

initial and boundary conditions have been specified, and all other auxiliary relations have been 

incorporated (verification of input data). The multi-physics models and sub-models, which are used to 

simulate the carbon capture system in MFIX, are well developed and widely used in industry and 

research. As such, we assume that the basic models and sub-models in MFIX are well verified and do not 

attempt to re-verify them as part of this work. 

Model validation, the main objective of the validation (V)/UQ sub-team, is to develop the process for 

determining the degree to which a CFD model is an accurate representation of the real solid sorbent 

carbon capture processes from the perspective of the intended uses of the model (AIAA 1998). The 

execution of this process requires experimentally measured data to compare with the simulation results. 

We plan to obtain these data from a variety of sources including NETL facilities and NETL-supported 

industrial experiments at external locations (DOE-NETL Industrial Challenge Problems) as well as 

available literature data. It is important to obtain not only the experimental measurements for system 

response quantities (e.g., solid mass flux and density, pressure drop, particle velocity, capture efficiency, 

temperature, residence time, etc.) but also the estimation of the measurement uncertainties. Consequently, 

the model validation requires a statistical estimation of the difference between model predictions and 

experimental results, including experimental uncertainties.  

Since many aspects of the CCSI CFD models are not exactly known, UQ is an important aspect of the 

modeling process. The CCSI UQ team (Element 6) is focused on modeling and investigating the 

uncertainty of the various models developed in the CCSI program. The CFD team (Element 2) will work 

closely with Element 6 to provide an integrated process for validating models and performing UQ 

analysis. UQ analysis will address specific uncertainty objectives, such as identifying important drivers, 

quantifying input distributions, understanding departure of the model from the underlying behavior, and 

determining what additional data to collect, through a sequential process designed to identify and 

characterize sources of uncertainty which can then be propagated, analyzed, and ultimately reduced 

through improved models or additional data collection.  

The subsequent sections provide more details on the CCSI CFD model V/UQ plan and its execution. 
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3. Objectives and Expected Outcomes 

The objective of the proposed validation and UQ work is to quantify the accuracy of the CFD modeling of 

the carbon capture system and to quantify our confidence in the model results. As will be discussed in the 

following sections, this work aims to validate the CCSI CFD models of the pilot (1 MWe), intermediate 

(25 MWe, 100 MWe) and full (650 MWe) scale carbon capture systems using a hierarchical validation 

approach. In this approach we use smaller scale models and simplified physics to investigate the accuracy 

of the various components of the CFD models and upscaling approaches used in CCSI’s Particle and 

Device Scale Modeling activities (Element 2). The validation approach that we use is specific to the CCSI 

program and can be considered as “application focused validation.” By “application focused validation,” 

we mean that we will perform a series of logical and relevant model validation studies specific to the CFD 

problems within CCSI, which will provide a quantitative confidence range on the CFD predictions for the 

full scale system. Our goal here is not to develop and follow a general and fully hierarchical validation 

plan that can be applied ubiquitously to any coupled physical phenomena or system. 

The outcome of this validation process will be estimates of the confidence range for system performance 

metrics for the developed CCSI CFD models and codes when used to simulate the carbon capture 

technologies of interest to the CCSI program. These estimates will be based on the confidence levels 

developed in the various decoupled unit problems as well as the upscaling procedure outlined in Figure 1. 

By considering smaller unit problems that isolate particular aspects of the multi-physics of the full scale 

system, we should be able to evaluate/isolate the contributions of different aspects of the model to the 

predictive errors, such as the effects of coupling different physics or the geometric upscaling of the 

coupled physics.  

This task has the following specific major objectives: 

 Quantify the accuracy of CFD modeling of laboratory and pilot scale solid sorbent carbon capture 

system(s). 

 Estimate the accuracy of CFD modeling of the full scale system through hierarchical validation, 

UQ, and upscaling. 

 Quantify the team’s confidence in the CFD model results. 

  



CCSI Validation and Uncertainty Quantification 

Hierarchy for CFD Models  Rev.0, September 30, 2012 

-4- 

4. Validation Hierarchy 

4.1 Overview 

This section gives an overview of the CCSI Validation Hierarchy. Further details of each level will be 

given in following sections. 

 

Figure 1: CCSI CFD Validation Hierarchy, Illustrating the Various Unit Problems of Interest, 

and the Levels of Validation that Lead up to Quantitatively Reliable Predictions for the 

Full Scale Device Systems 

Solid sorbent-based carbon capture devices are complex engineering systems involving complicated 

multi-phase and multi-scale phenomena as well as state-of-the art industrial technology. To deal with this 

complex engineering system, we introduce a hierarchical structure (AIAA 1998, Oberkampf 2010) to 

estimate the confidence range of the CCSI CFD models’ predictions (Figure 1). The complex solid 

sorbent carbon capture system is divided into several tiers of progressively increasing complexity.  

The lowest level of the validation hierarchy is comprised of the unit problems encountered in the adsorber 

and regenerator, where each unit problem represents an important physical phenomenon. For the current 

system, the important physical phenomena, i.e., unit problems, are identified as (1) flow in a bubbling 

fluidized bed, occurring in the adsorber; (2) flow in a moving fluidized bed, prevalent in the regenerator; 

(3) reaction kinetics; and (4) heat transfer, which are expected to be significant in both the regenerator and 

adsorber. From a modeling perspective, each unit problem can be viewed as a set of models, and suitable 

choices for each model and its parameters will be based on existing knowledge or, if necessary, CCSI 

validation activities. For example, in the bubbling fluidized bed unit problem, several options are 

available for modeling the gas drag force experienced by the fluidized particles. As some model choices 

are expected to perform better than others, the identification of the best available models would be part of 

the CCSI validation activity.  
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The second level of the validation hierarchy addresses upscaling of the chosen models for simulating 

large geometries. It has been shown that in order to obtain quantitatively accurate results for multiphase 

systems, the grid size used in CFD simulations must be on the order of a few particle diameters (Agrawal 

2001, Andrews 2005). When simulating a device which is tens of meters tall, it is not possible to have 

grid sizes in the range of 4-10 times the particle diameters (1 mm - 1 cm). However, the effects of fine 

scale structures can be accounted for in faster, coarse grid simulations through the development of 

“filtered equations” for gas-particle drag, effective gas viscosity, effective reaction rates, effective heat 

transfer coefficients, and other important model variables. Identification of existing filtered equations 

and/or development of unavailable filtered relationships will be part of the upscaling activity.  

In the third level of the validation hierarchy, decoupled laboratory scale cases (flow without reactions or 

heat transfer) will be compared against predictions from the upscaled flow models. The NETL Carbon 

Capture Unit (C2U) is expected to provide useful validation data at approximately this scale despite some 

differences from the CCSI design. Experimental data from the NETL C2U system will be used for 

validation along with literature data. This step will help build confidence regarding the choice of models 

in the first level and the upscaling (filtering) procedure developed/implemented in the second level. It 

should be noted that it may not be possible to conduct decoupled experiments to test the performance of 

upscaled reaction or energy models. Quantitative assessment of the reliability of the model predictions 

can also be made for each unit problem, which will help in understanding the compounding of errors in 

the next level.  

The fourth level of the hierarchy couples the unit problems (flow, reactions, heat transfer) together with 

the appropriate upscaling relationships for modeling a laboratory scale adsorber and regenerator such as 

the NETL C2U reactor or the 1 kWe ADA-ES system. This is the scale where fully coupled, and 

decoupled (cold flow), device scale measurement data will be available. The predictions of the coupled 

system will be validated against experimental measurements, including attempts to gain some 

understanding and/or functional relationships due to the compounding/coupling of errors of the unit 

problems.  

The next tier of the validation plan is for pilot scale cases such as a 1 MWe system. At this time there are 

no 1 MWe systems in operation. However, ADA-ES is designing a 1 MWe system that, if available, could 

be used to validate a pilot scale CFD simulation.  

The topmost level of the hierarchy is to obtain quantitative confidence on the predictions for the 

larger device scale systems (25 MWe, 100 MWe and 650 MWe).  As of the writing of this 

validation plan, no full scale carbon capture systems are in operation nor are there any plans to 

construct such a system in the CCSI project life cycle. Therefore, the validation of the larger 

scale device models will be based on the validation activities in the lower tiers. The larger scale 

device simulations will rely on the information gained through the smaller scale validation tiers 

and the expertise of the Element 2 team. In developing these models the validated unit problems 

and upscaling methods will be employed. In addition, the expertise of Element 2 personnel will 

be used to determine the appropriate baseline operating conditions and parameters for the device 

scale models. The validation work at this larger device scale will also provide estimates of the 

error in the device scale models and the sources of those errors, which will come from the 

knowledge gained through the lower tier validation studies and propagation of uncertainty.  

Our work at the larger device scale tier will lead to the development of baseline device scale 

models based on the validation work and our knowledge of the system. The development and use 

of these baseline models will be coordinated with other elements in the CCSI program to enable 

the development of reduced order models and for UQ analysis. It is expected that knowledge 

based calibration of the model parameters will be critical in obtaining better quantitative 

predictions. 
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4.2 Validation Tiers 

This section gives details of each tier of the CCSI Validation and UQ Hierarchy. 

4.2.1 Unit Problems 

The unit problems for the CCSI CFD validation isolate the complex multi-physics of the CCSI reactor 

into simpler single-physics units. This includes the multi-phase flow in the bubbling fluidized bed of the 

adsorber, the reactions of carbon dioxide (CO2) with the solid sorbent particles, the heat transfer in the 

reactor, and the multi-phase flow of the moving fluidized bed of the regenerator. The multi-phase flow of 

the adsorber and regenerator are considered in separate unit problems due to the different flow regimes 

present in the designs of the adsorber and regenerator that will affect the modeling methods used to 

simulate the two sub-systems. The operating conditions of the unit problem will be determined by the 

design of the full scale carbon capture systems. To determine the appropriate operating conditions for the 

unit problems, Element 2 is working closely with the Process Synthesis and Design team (Element 3). 

The validation of the unit problems focuses on previously published experimental and code validation 

research. The unit problems based on the full scale system are common configurations and physical 

phenomena arising in many different multi-phase reactors used in numerous mechanical and chemical 

engineering industries. We will take advantage of the published literature on these unit problems to 

determine the most accurate modeling methods and model parameters.  

A detailed literature search for each of the unit problems shown in Figure 1 has been done, and available 

literature has been compiled and evaluated by the CCSI Element 2 team and V/UQ sub-team members. 

The most appropriate literature cases have been identified and will be used for the validation and UQ 

analysis of the unit problems for the CCSI systems. The available literature for each of the unit problems 

is discussed below. 

Bubbling Bed: Several validation studies of the hydrodynamics of bubbling beds are available in the 

literature (Hulme 2005, Li 2011, Herzog 2012, Lindborg 2007, Esmaili 2011, and Asegehegn 2011). 

From the available literature, the experimental work of (Kim 2003) has been selected as the most 

appropriate case for the CCSI validation studies of the bubbling bed unit problem. 

(Kim 2003) completed an experimental study on the hydrodynamics and heat transfer in a bubbling bed 

with immersed tubes. The experimental setup measured 0.34 x 0.48 x 0.6 m with a staggered tube bank of 

25.4 mm diameter tubes. The solid phase was sand with a mean diameter of 240 μm, and a density of 

2582 kg/m³. Experiments were carried out at five different gas velocities with measurements taken around 

a central tube at various angular locations as discussed in Section 6. The hydrodynamic data published 

includes bubble and emulsion phase fractions, bubble frequency, and emulsion contacting time. 

This paper was chosen for the bubbling bed validation case due to its similarities to the CCSI designs. 

The experimental setup replicates the desired geometry, uses similarly sized particles, tests a variety of 

gas velocities, and reports several variables that can be easily compared to numerical simulations. 

Additionally, initial validation studies using MFIX have been previously done at NETL (Li 2010). 

Moving Bed: Very few experimental studies on the hydrodynamics of a moving fluidized bed are 

available in the literature. The most appropriate case for the CCSI validation work is that of (Yoon and 

Kunii 1970), who studied the gas flow and pressure drop through moving beds using two bed setups: a 

7.0 cm diameter, 90 cm high acrylic pipe, and a 4.1 cm diameter, 45 cm high iron pipe. The particle size 

of the solid phase was varied throughout the experiments. The mean diameters were measured to be 133, 
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261, 430, and 1130 μm with densities of 2470, 2480, 2480, and 2480 kg/ m³, respectively. The 

experimental results include the solids velocity, pressure gradients, relationships between slip velocity 

and pressure gradients, and relationships between gas flow rate and pressure gradients. 

This paper examines a moving bed with no perforated plates. Although the geometry and particle 

properties are slightly different than the current CCSI full scale design, the results from (Yoon and Kunii 

1970) represent the best moving bed validation studies available in the literature. Despite the particle 

material being different, the range of diameters should allow good comparison by analyzing the particle 

size nearest to that being considered in CCSI (solid sorbent material 32D). 

(Lapidus 1957) give theoretical results of the mechanics of vertical moving beds. Their research focuses 

mainly on the derivation of empirical relationships; however, they do present and compare the 

experimental data of (Struve 1955) and (Price 1951). (Struve 1955) used glass spheres of diameter  

100 μm and water as the fluid phase; while Price used glass spheres with diameters of 8240 μm. The 

published data includes the holdup vs. slip velocity and holdup vs. fluid velocity. The experimental data 

presented in (Lapidus 1957) is sparse but should give a good starting point for validation. Further 

examination of the work of (Struve 1955) will be needed to apprehend the full experimental details. Due 

to the large solid phase diameter used by (Price 1951), we will not pursue this dataset at this time. 

Heat Transfer: Many studies consider heat transfer in a fluidized bed; however it has been shown that the 

particle size has a significant effect on the results and accuracy of the simulation. Based on the full scale 

CCSI design, we conclude that the heat transfer data from (Kim 2003) is best suited for the CCSI V/UQ 

studies. The second half of (Kim 2003) reports experimental heat transfer results. The central tube in their 

setup included a resistance heater and an angular array of thermocouples. Using a variable power supply, 

this heat transfer probe was held at a constant temperature. The variables calculated and reported include 

the surface temperature and heat transfer coefficients (time-averaged and instantaneous) that should 

provide sufficient data for validation. Additionally, integrating heat transfer into the previously validated 

bubbling bed unit problem will save time by eliminating the need for a redundant hydrodynamics 

validation case.  

Another possible heat transfer validation study is that of (Yusuf 2011), where a numerical study on the 

heat transfer in a bubbling bed with immersed tubes was completed. The setup was based on (Olsson and 

Almstedt 1995)'s experimental work. The bed setup measured 0.2 x 0.3 x 2.1 m and contained forty-six 

20 mm diameter horizontal tubes in a staggered pattern. The solid phase was silica with a mean diameter 

of 700 μm and density of 2600 kg/m³. Similarly to (Kim 2003)'s experiment, one tube was set as the heat 

transfer probe and measurements were recorded around the perimeter. The void fraction and heat transfer 

coefficients (local and time averaged) are reported and can be used in conjunction with the original data 

for validation. 

This paper has several favorable features: experimental data is available for the same setup, the simulation 

uses an Eulerian-Eulerian framework, the effect of bed pressure is reported, and the geometry is similar to 

the geometry in the adsorber. The unfavorable features include: large particle diameter, the poor 

representation of data, and the approximation of round tubes as square tubes. The tube-geometry 

approximation will undoubtedly cause some discrepancies when compared with the experimental data. 

For these reasons our initial heat transfer validation studies will focus on (Kim 2003), and if necessary, 

we will use the studies presented by (Yusuf 2011). 

The particle size is an important parameter in heat transfer which should also be considered in our 

validation studies of the heat transfer unit problem. At this time we have not identified any appropriate 

validation studies or experimental data investigating the effects of particle size; however we will continue 

to look for appropriate cases and will consider any identified cases in our validation studies.  
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Chemical Reactions: The CCSI full scale carbon capture system is being designed for use with an NETL-

developed sorbent material known as 32D. This material is new, so there is little data available on its 

behavior in a carbon capture system. Currently Element 1 is developing reaction models for 32D based on 

experimental data. Additionally, Element 1 is working with Element 6 on validation and uncertainty 

quantification studies of the recently developed chemical kinetic models. These models have been 

implemented into the Element 2 CFD models. The results of the UQ analysis will be used to propagate 

the uncertainties of the reaction models to the full scale model. Additionally, experimental operation of 

32D in the C2U system is also planned and will be used to validate the CFD chemistry model under 

operating conditions similar to the design conditions of the full scale system. 

MFIX has been used previously to model a number of reactive systems. (Das 2004a,b) completed a two-

part study on dilute phase gas-solid riser reactors. Part two details the simultaneous adsorption of SO2-

NOX from flue gases. One- and three-dimensional simulations were compared to the experimental data. 

The main reaction variable investigated was the SO2 and NOx removal and SO2 and NOx concentration. 

The one-dimensional simulation results were in good agreement with the experimental data. The three-

dimensional simulation tended to under predict the removal values.  

(Syamlal and O'Brien 2003) studied the decomposition of O3 in a bubbling fluidized bed using MFIX. 

The simulation was based on the experimental work of (Fryer and Potter 1976). (Syamlal and O'Brien 

2003) successfully simulated the hydrodynamics of the process; however, the reactive species 

concentration profiles were not in as good agreement. The O3 concentration profile reached a minimum 

significantly closer to the base of the bed than (Fryer and Potter 1976) observed. 

Both (Das 2004a,b) and (Syamlal and O’Brien 2003) investigated the accuracy of modeling reacting 

multiphase flow with MFIX. Although they consider different chemical systems than those considered in 

CCSI, they provide insight into the ability of MFIX to accurately model reacting multiphase flows. These 

papers show that MFIX is able to predict the appropriate trends, but may not be able to predict the exact 

quantitative results. This will be investigated further as CCSI implements the Element 1 reaction models 

and works with NETL’s C2U system on CCSI specific laboratory scale experiments.  

CO2 Reactions with Amine: (Mebane 2012, Lee 2012) developed a reaction model for the reactions 

between CO2 and an amine sorbent (32D) particle over a range of temperatures from adsorption data 

obtained by thermogravimetric analysis (TGA). Their model is a function of gas and solid species 

concentrations and local temperature. They validated the model with TGA data at various temperatures 

and discuss the applicability and shortcomings of the simple model. Additionally they have worked with 

Element 6 to investigate the uncertainties of their model. 

4.2.2 Upscaling  

It has been shown that local instabilities in fluidized systems affect the global flow behavior (Agrawal 

2001, Igci 2012a). These instabilities are in the form of dynamic particle clusters that form and 

disintegrate with time (Figure 2). Since these clusters strongly affect gas-particle drag, effective viscosity, 

effective pressure drop, and effective reaction rates, among other properties, CFD simulations need to 

capture clustering behavior accurately to obtain quantitatively reliable predictions. One strategy is to use a 

grid size comparable to the cluster size, which is approximately ten times the particle diameter (Agrawal 

2001, Holloway 2012). However, for simulations of large devices, such as those considered in the CCSI 

program that are tens of meters in size, using a mesh size ten times the particle diameter (1 mm - 1 cm) is 

computationally infeasible. 
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Figure 2: Snapshot of Instantaneous Particle Clusters, from (Igci 2012a) with Resolutions 

(left to right) 64×64, 128×128, 256×256, and 512×512 Grids. Local Instabilities, 

i.e., Particle Clusters, are Resolved Better at Higher Resolutions. 

An alternate strategy to incorporate the influence of these small-scale clusters in coarse grid simulations is 

to use correction factors obtained by performing highly resolved simulations of a smaller representative 

system, then ‘filtering’ out the necessary correction factors to be used in coarse grid simulations. It should 

be noted that the filtering operation is dependent on the property of interest being corrected. Hence, the 

filtering operation needs to be performed separately for each of the conservation equations (mass, 

momentum, and energy) and for each of the constitutive relationships used. For the CCSI system, four 

sets of fundamental physical behavior are identified for filtering/upscaling gas-particle flow in the 

adsorber, flow in the regenerator, reaction kinetics, and heat transfer. Filtered models will be developed 

and validated for each physical behavior as part of the V/UQ work in collaboration with  

Element 2. Below we describe some of the available filtered/upscaling relationships, the shortcomings of 

the available relationships with respect to CCSI devices, and the proposed future efforts by the CCSI 

team.   

Flow Upscaling in the Adsorber and Regenerator: Although both devices operate in very different 

fluidization regimes, with larger fluidizing velocities in the adsorber compared to the regenerator, a single 

model encompassing all regimes may be developed. In a series of papers by the multiphase CFD group at 

Princeton University (Agrawal 2001, Andrews 2005, Igci 2008, Igci 2011, and Igci 2012b), a model for 

filtered gas-particle drag, effective viscosity, and effective pressure drop has been developed. For 

validation, (Igci 2012a) compared predictions from a 3D riser model with the available experimental data 

from the Particulate Solid Research, Inc. (PSRI), facility in Chicago. Given the inherent (and 

unquantified) uncertainty in the experimental data, the filtered models for flow were able to predict the 

pressure gradient, particle holdup, and solid mass flux with reasonable accuracy. Development of similar 

filtered equations and validation efforts are also underway at the Université de Toulouse (Parmentier 

2011). The validation efforts for the filtered flow models are far from complete and need to be tested for a 

wider range of particle/gas properties and model parameters. As a comprehensive validation effort is 

beyond the means of the CCSI effort, the validation team will attempt to validate some of the upscaling 

cases but will also rely upon independently published validation of these models.  

Validation studies of the flow upscaling methodologies are currently ongoing. As part of the CCSI 

program, collaborators at Princeton University are investigating the accuracy of their filtered models 

(Agrawal 2001, Andrews 2005, Igci 2008, Igci 2011a, Igci 2012b) in comparison to experimental 

fluidized bed data. They are currently investigating three cases based on two NETL challenge problems 

and experimental data from (Zhu 2008). The cases consider different flow regimes, including a circulating 

fluidized bed, a bubbling bed, and a turbulent bed. Initial comparisons to the experimental data show that 

the filtered models perform relatively well; however, they do show sensitivity to different model 

parameters. This can be seen in the case of the circulating fluidized bed where the length of the exit pipe 

greatly affects the accuracy of the results (Figure 3 and Figure 4). 
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Figure 3: Distributions of Axial Pressure Gradient 

 

Figure 4: Distributions of Particle Velocities 

The CCSI design also consists of an array of cooling rods in the adsorber and perforated porous plates in 

the regenerator. As the coarse grid full scale simulations cannot resolve every rod or hole, filtered models 

for upscaling the macroscopic influence of these internal geometry features will also be developed. Even 

though there have been a few validation studies on flow around a bundle of cylindrical tubes (for example 

(Holloway 2012)), there has been no progress towards development and validation of upscaling 

relationships. Element 2 has begun the development of a filtered model for the effects of heat transfer 

tubes in the adsorber. Validation of the filtered model will rely on the available literature data such as 

(Holloway 2012) and (Kim 2003). 

Reaction Upscaling: Formation of clusters significantly affects the effective reaction rate in a unit volume 

of a fluidized bed (adsorber and regenerator). The available literature offers very preliminary information 

pertaining to upscaling of chemical kinetics (Holloway 2012). The reaction filtering method described in 

(Holloway 2012) is limited to a simple first order reaction catalyzed by the solid phase. In contrast, the 

particulate phase in the CO2 capture reaction is a reactant and not a catalyst. A model for the chemical 

kinetics of CO2 capture is described in a CCSI document authored by Element 1 (Mebane 2012), which is 

comprised of multiple reaction stages that include second and third order kinetics. Starting with the 

kinetics filtering approach described in (Holloway 2012), an upscaling approach for the more complex 

CO2 capture reactions will be developed and validated. The validation may be obtained from experiments 
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utilizing simpler geometries, as well as devices/materials directly related to CCSI efforts; either approach 

is suitable for validating the filtered reaction models. At this stage, the filtered flow equations described 

earlier may be included with the upscaled reaction models (as described in (Holloway 2012)).  

Heat Transfer Upscaling: Although validation of the heat transfer unit problem has received some 

attention (see (Hamzehei 2010) for a recent example)), the CCSI validation team is unaware of any 

publication addressing the issue of upscaling heat transfer relationships in fluidized bed CFD simulations. 

Filtered heat transfer equations will be developed by the CCSI team in collaboration with Dr. Sankaran 

Sundaresan’s multiphase group at Princeton. The first step in this process will be to assess whether 

filtered heat transfer equations are required, as small temperature variations need not necessarily be 

captured accurately; however, they may be compounded in an overall reactive system since the reaction 

rates and enthalpies of reaction are a function of temperature. The definition of ‘small’ with respect to the 

temperature range would depend on the sorbent and operating conditions. Once filtered heat transfer 

equations are developed, the CCSI team will focus on validating these results based on available 

experimental heat transfer data for standard test problems (available from literature) and heat transfer 

occurring in the CCSI devices. As the existing literature does not address this important CFD problem, 

this step will also represent a significant advancement in the fundamental understanding of heat transfer 

in energy systems.  

As a comprehensive validation of all available and developed upscaling methodologies is not possible, the 

CCSI validation team will identify and focus on the individual problems that have a greater impact on 

carbon capture. For example, if temperature ranges are found to be small, heat transfer may be ignored. 

Moreover, the CCSI team will also rely on independently published studies and academic partners to help 

validate existing upscaling/filtered models.   

4.2.3 Decoupled Laboratory Scale Validation  

The decoupled laboratory scale validation will focus on larger scale solid sorbent systems that can be used 

to evaluate the simpler physics of the unit problems combined with upscaling. Validation data from 

experiments and literature will be used. In particular, the experimental C2U at NETL will be used to 

assess the accuracy of a simplified operation of a carbon capture reactor. The C2U system is designed for 

validation and operational testing of solid sorbent carbon capture systems. The C2U consists of bubbling 

bed reactors and is instrumented with numerous sensors for thorough data collection. Results from the 

experiments planned on the C2U system will be used to validate the upscaling of the unit problems in a 

carbon capture system. This will include modeling the experimental validation cases planned by NETL, 

such as non-reactive cold flow where solid sorbent particles are run through the system without reactions 

at isothermal conditions, and also working with NETL to plan CCSI specific validation experiments. At 

this time both two dimensional and three dimensional CFD models of the fully-coupled C2U circulating 

system are being developed for validation and design studies. 

Decoupled laboratory scale validation will help us establish quantitative confidence in our choice of unit 

problem models and our upscaling filters. By isolating specific larger scale unit problems, we will gain a 

better understanding of how the various physics of the carbon capture reactor contribute to the 

compounding modeling error without blurring the source of error between the upscaling and the coupling 

of unit problems. 

Currently there are a number of experimental laboratory scale fluidized bed systems that have been 

reported in the literature that include experimental data on decoupled experiments. These cases can be 

used as initial validation cases for the models developed in CCSI. An example of a literature case that 

may be used for validation is the experiments of (Igci 2011b). In the study, the authors have performed a 

set of 3D computational simulations (using MFIX) for validation of the filtered two-fluid model against 

the experimental data which was generated in a 14.2 m tall circulating fluidized bed riser with a 0.2 m 
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internal diameter located at the PSRI experimental research facility in Chicago (Sun 1999). The 

experimental data set was specifically designed for benchmark modeling exercises. The authors present 

the physical properties of the particles and the gas used in the computational simulations and the 

simulation settings that are compared with the experimental case. The authors also consider the 3D 

filtered model equations with and without wall corrections. System response quantities (measured and 

predicted) include time-averaged radial profiles of particle volume fraction, axial particle phase mass 

flux, and axial superficial gas velocity as well as time-averaged gas pressure gradient profiles. The 

authors analyzed and compared the experimental data with the filtered model and considered the effects 

of the filter length, grid resolution, and boundary conditions on the accuracy of the model. 

4.2.4 Coupled Laboratory Scale Validation 

The C2U system and literature data will also be used to consider laboratory scale coupled validation. The 

coupled laboratory scale simulations will consider the effects of coupling the unit problems on the 

accuracy of the models and will allow us to quantify their contributions to the overall error of the models. 

By comparing the results of the decoupled and coupled validation problems, we will be able to investigate 

the effects of coupling versus the effects of upscaling on the accuracy of the simulations. This will help in 

the overall validation evaluation for the device scale systems. By isolating the individual contributions of 

error, we will be able to identify areas of improvement for future model development and experimental 

research to facilitate reduction of uncertainty through model refinement and collection of additional data. 

The coupled laboratory scale validation will focus on data collected from the C2U system and data 

available in literature. A few examples of available literature data are listed below: 

Coupled Heat Transfer and Hydrodynamics in a Fluidized Bed (Ebert 1993): In order to study the role of 

particles in augmenting heat transfer from the wall of a circulating fluidized bed, the authors carried out 

simultaneous heat and mass transfer experiments in a 20 cm diameter circulating bed operating at 

atmospheric conditions. The measured variables included heat transfer coefficients as functions of 

superficial gas velocity and suspension density, as well as the effects of particle density on heat transfer 

coefficients. The results for the overall mass and heat transfer parameters were also presented.  

Carbon Capture Reactor (Seo 2009): The authors investigated a carbon capture reactor which uses a 

potassium-based solid sorbent in a bubbling fluidized bed reactor. The authors measured the physical 

properties of the sorbent, such as pore size, pore volume, and surface area after carbonation or 

regeneration, to investigate the extent of the carbon capture reaction. An experimental reactor with an 

inner diameter of 0.05 m and a height of 0.8 m was used and included thermocouple measurements 

throughout the reactor. The experimental setup also measured the CO2 removal profiles as well as the 

amount of CO2 capture. Although this case uses an alternative sorbent material from that considered in 

the CCSI program, the experimental data could still be useful for coupled simulations of the reactions, 

hydrodynamics, and heat transfer in a laboratory scale carbon capture reactor.  

4.2.5 Pilot Scale Systems 

If data should become available for pilot scale carbon capture systems, we will consider the validation of 

coupled and decoupled pilot scale problems in a manner similar to the laboratory scale cases. Pilot scale 

data would allow us to further validate the upscaling methodologies and coupling of unit problems. 

At this time an experimental pilot scale carbon capture system does not exist; however, ADA-ES is 

currently designing a 1 MWe carbon capture reactor. We will work closely with ADA-ES to support them 

in this effort and to collaborate on validation experiments if ADA-ES is willing.  
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4.2.6 25 MWe, 100 MWe, and 650 MWe Device Scale Systems  

Using computational tools to virtually develop larger to full scale carbon capture systems is the main 

focus of the CCSI program. At the time this document is prepared, there does not exist (nor are there any 

plans for) a full scale solid sorbent carbon capture system. As such we will most likely not have 

experimental data available for the validation of our full scale reactor models. Should the situation change 

and a physical system be built, we will work closely with the industry partner or laboratory to obtain data 

for validation of our larger scale models. 

Based on the currently anticipated availability of experimental data, the validation plan for the 25 MWe, 

100 MWe, and full scale system will rely on the validation and quantitative confidence gained at the 

lower tiers of Figure 1. For our larger (> 1 MWe or laboratory scale) to full scale models, we will assume 

that once the physics coupling of the unit problems and geometric upscaling of our models have been 

validated at the laboratory scale (and pilot scale if available), the validity of the modeling methodology 

will hold true for larger to full scale systems. This assumption relies on thorough validation at the unit 

scale, upscaling, and laboratory scales which will be the main focus of the CCSI validation work. The 

validation work at the lower tiers will provide us with a confidence range for the full scale system and 

will allow us to separate out the contributions of geometric upscaling and unit problems coupling to the 

overall predicted error of the full scale system. This will help to identify areas for improvement in model 

development and experimental property and parameter measurement, which in turn will enhance our 

ability to understand and manage the uncertainty in the CFD models being developed to model carbon 

capture systems. The CCSI validation team will attempt to find experimental data for larger scale 

systems, which are or similar to the CCSI design for validation; however, this will rely on the availability 

of data at these larger scales.  
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5. Uncertainty Quantification 

Element 6 will work with Element 2 to incorporate UQ analysis at the various stages of the validation 

hierarchy. UQ analysis will start at the unit problem level and will entail close collaboration with  

Element 2.  

5.1 Overview of Uncertainty Quantification 

The UQ process begins with a Definition phase in which models are specified, and goals and objectives 

for the uncertainty analysis (UA) are developed that will guide the selection of UQ tools needed to obtain 

information about uncertainty that is needed to support the overall modeling and decision-making 

framework. Possible sources of uncertainty, including both model uncertainty and data uncertainty, are 

identified by working closely with Element 2 members using available data and knowledge to narrow 

down the set of variables of interest. Once the variables of interest have been defined, parametric 

distributions and/or model forms are developed in the Characterization step that capture the available 

information about uncertainty. Uncertainty may then be propagated either forward or backward through 

specified models in the system. Various types of analyses may be performed to study the impact of the 

uncertainties that are present. For example, sensitivity analysis (SA) can be conducted to learn about the 

relative impacts of different input variables and their importance in driving the uncertainty in model 

outcomes. Finally, the information gained from examining the existing uncertainty can be used to 

improve the models themselves or to inform the collection of additional data to ultimately reduce the 

uncertainty present in the system. 

In this section overviews of three critical components to UQ, (i) calibration (ii) validation, and (iii) 

UA/SA are provided in the setting of a single model (e.g., a single unit problem).  Finally, these concepts 

are used to provide a hierarchical UQ framework. 

5.1.1 Calibration 

UQ of the unit problems, for example, will proceed by first identifying the relevant input variables (e.g., 

pressure, temperature, etc.), model (i.e., calibration) parameters, and output variables (e.g., amount of 

CO2 absorbed) of the unit problem under consideration. Determining the relevant parameters/variables 

can be accomplished by a combination of examining the findings of previous work in the literature and 

through conversations with modelers (Element 2). In conjunction with identifying relevant input variables 

and model parameters, appropriate distributions/ranges for the values of these quantities for the particular 

CFD application can be specified.  

At this stage, an assessment will be made of how many 

model runs are computationally feasible for calibration and 

uncertainty characterization. If feasible, it would also be 

helpful to make some runs (e.g., from an LHS sample) of the 

model at this stage and perform SA (Helton 2007, Storlie 

2009) to confirm and expand our understanding of how 

sensitive the outputs may be to the various model parameters. 

This approach is currently being taken with the first unit 

problem (bubbling bed), as discussed in Section 6. 

Once the relevant parameters are understood, an appropriate 

calibration scheme can be developed. A Bayesian-like 

calibration (Kennedy 2001) will be used, which will most 

likely need to explicitly deal with (1) emulation of the model 

output (Kennedy 2001, Higdon 2004), (2) treatment of 

Parameter 1

Prior Distributions

Parameter 2 Parameter p

Experimental 
Data

Parameter 1

Posterior Distributions

Parameter 2 Parameter p

Figure 5: Overview of Bayesian 

Calibration  
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functional output (Bayarri 2007, Higdon 2008), and (3) calibration parameter screening/selection (Bayarri 

2007, Higdon 2008). A Bayesian calibration works by treating the model parameters as random variables 

and first defining a prior distribution for them (top of Figure 5). The computational model is linked to the 

experimental data through a statistical regression model, and the model parameters are then conditioned 

on the experimental data to provide a posterior distribution of likely parameter values that best describe 

the experimental data (bottom of Figure 5). In reality there is really one joint distribution of the model 

parameters.  Figure 5 and subsequent figures of this type depict the entire joint distribution as several 

marginal distributions only for ease of presentation. The results of the calibration scheme then is (1) a 

posterior distribution characterizing the uncertainty of model parameters, and (2) an estimated model 

discrepancy to the observable process.  A more detailed description of this process is provided in Section 

6.2. 

5.1.2 Validation 

Model predictions will be compared with experimental data to check for any non-negligible bias or lack 

of fit. This can be accomplished by using the calibrated model to predict the data (we would predict data 

points that were not used in the calibration) and see how well we are doing at prediction of "out-of-

sample" data points. In statistics this concept is called cross-validation and is a well-accepted means to 

"validate" a predictive model. The reason for using cross validation is that out-of-sample model 

predictions do not allow the predictions to “cheat” by tuning the model parameters to over-fit to the 

experimental data.  These out-of-sample predictions will then be compared to the data in a model 

assessment framework such as those discussed in (Oberkampf 2006) and (Romero 2011).  Essentially this 

boils down to the following scenarios represented in Figure 6 taken from (Romero 2011).  In these cases a 

scalar output is assumed and there is uncertainty due to measurement error in the experimental data.  

There is also simulator output uncertainty due to the posterior uncertainty distribution of the calibrated 

parameters.  These two forms of uncertainty are represented as confidence bands in the figure.  It then 

comes down to expert judgment whether or not the model is performing well enough to be considered 

validated in these cases.  If the uncertainty bands are two wide to make such a decision, then it is 

necessary to collect more experimental data (more replicates if the measurement error is making the 

experimental observation bands too wide or more space filling design points if the uncertainty in the 

calibration parameters is making the simulator output bands too wide). 

Figure 6: Generic categories of comparison of uncertainty intervals between experimental versus 

simulation results for a scalar output quantity. 

If the simulator prediction bands and the experimental observation bands do not overlap at all, then there 

is some lack of fit. If the magnitude of the lack of fit is substantial enough to be deemed non-negligible by 

subject matter experts, than model improvements will need to be made. If necessary and/or feasible, an 

estimated model discrepancy can be used to guide model improvements until it is determined that the 

model is adequate, or that a model discrepancy needs to be incorporated somehow into the final 

characterization of the model. 

sim.exper. sim.exper. sim.

exper.

Bands overlap, but potential model 
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Bands overlap, but potential model 
shortfall to upside and downside

Bands overlap, but potential model 
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5.1.3 Uncertainty Analysis and Sensitivity Analysis 

Whether or not experimental data are available, it is 

usually necessary to perform UA and SA on the 

model. UA is the process of propagating the 

uncertainty in the model parameters through to the 

outputs of interest (e.g., % CO2 captured for the full 

scale system) to obtain a distribution of model output. 

If experimental data are available, the uncertainty in 

the model parameters refers to the posterior 

distribution resulting from the calibration.  If 

experimental data are not available, the uncertainty in 

the model parameters refers to the prior distribution, 

either obtained from expert knowledge or a previous 

calibration, etc.  In either case, propagating the 

uncertainty in model parameters to model output can 

be performed in the simplest case with Monte Carlo 

sampling as follows. First, sample a set of values for 

the model parameters from their uncertainty 

distribution (top of Figure 7), and then run the model with these values to obtain the relevant outputs. 

Repeat this process many times to obtain a sample from the resulting distribution of the outputs (bottom 

of Figure 7). A SA is also performed at this point to further understand the model (e.g., ascertain which 

model parameters contribute most to the uncertainty in the output, and ensure that the model behaves as 

expected when varying the model parameters, etc.).  

It is very often the case that Monte Carlo sampling of the computer model is impractical due to limited 

computational resources.  In this case, the UA and SA will need to be done using an emulator (i.e., a 

statistical approximation to the actual model) as in (Kennedy 2001, Higdon 2004, Storlie 2009, and Reich 

2009) to perform the required Monte Carlo sampling. A final issue to consider is that we may need to 

distinguish aleatoric (e.g., associated degradation/attrition of sorbent material) and epistemic (e.g., 

intrinsic imprecision in the known values of model parameter) uncertainty sources as in (Helton 2000) 

when performing UA/SA. 

5.1.4 Hierarchical UQ 

UQ of the pilot and laboratory scale problems will proceed by again identifying the relevant input model 

parameters and output parameters that will likely be a subset of those parameters involved in the unit 

problem models.  The result of UQ for the unit problems is a model form for each unit problem along 

with a posterior distribution of likely values for the corresponding model parameters.  Therefore, the prior 

distributions of the model parameters at this stage will be their respective posterior distributions resulting 

from the previous calibration of the unit problems. A schematic providing an overview of the UQ 

hierarchical framework is provided in Figure 8.  An assessment will be made of how many runs of the 

model are feasible for calibration and uncertainty characterization. Once again, a calibration scheme will 

be developed and applied to the experimental data to produce a posterior distribution characterizing the 

uncertainty of (1) model parameters, (2) model discrepancy to the observable process, and (3) the relevant 

outputs. Model predictions will be compared with experimental data (e.g., C2U experiments) as in the UQ 

of the unit problems to check for any non-negligible bias or lack of fit, and model improvements can be 

made if needed. 

Computational 
Model

Parameter 1 Parameter 2 Parameter p

Model Parameter Uncertainty Distributions

Output 1 Output 2 Output m

Model Output Uncertainty Distributions

Figure 7: Propagation of Uncertainty in 

Model Parameters to Model Output 
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Figure 8: UQ Hierarchy Framework 

In the hierarchy of moving from unit problems to laboratory scale problems, or laboratory scale to full 

scale, there are several models G1, G2, ..., GK that are used to create a higher level model H where the 

term “used” does not mean that GK is necessarily a sub-model of H. For example, suppose model G1 is 

implemented via a CFD code (MFIX in this case) to model a case with only some of the physics present 

in the full scale case, e.g., flow with heat transfer, but not chemical reaction or isothermal chemical 

reaction. Model G1 is run for cases where experimental data exists, and the model can be calibrated. 

These experimental conditions (geometry, temperature, etc.) will differ somewhat from the full scale 

conditions where we wish to run model H. Model H (up the hierarchy) uses MFIX again, but with all the 

physics coupled, and for a system for which we have no experimental data. However, again the model for 

the full scale system will have model parameters which are a subset of the model parameters involved in 

the laboratory scale problems. The Gs used to create H will depend on those model parameters. We can 

evaluate H at the model parameter values deemed appropriate by calibrating G1,...GK to generate full scale 

predictions. These predictions will be only as good as the assumption that the full scale model can be 

constructed with confidence and that it will have sufficiently accurate prediction capability based on the 

G1, G2,..., GK, and the results of the laboratory scale problems. This assumption is virtually impossible to 

quantitatively verify without experimental data. However, we can get a qualitative measure of the 

plausibility of this assumption based on the results encountered during the upscaling from the unit 

problems to laboratory scale (and pilot scale if data is available) problems, for example. 

Therefore to conduct UQ for the full scale model, the model parameters for the full scale model will be 

assigned their respective posterior distributions resulting from their last level of calibration data.  These 

Figure 8: Framework for Hierarchical UQ 
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distributions will then be used to perform an UA by propagating the uncertainty in the model parameters 

through to the outputs of interest (e.g., % CO2 captured) for the full scale system to obtain a distribution 

of model output. Propagating the uncertainty in model parameters to model output is performed in the 

simplest case with Monte Carlo sampling as follows. First, sample a set of values for the model 

parameters from their uncertainty distribution (top of Figure 7), and then run the model with these values 

to obtain the relevant outputs. Repeat this process many times to obtain a sample from the resulting 

distribution of the outputs (bottom of Figure 7). A SA will also be performed at this stage to obtain a 

distribution of model output. 
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6. Initial Validation and UQ Studies of the Bubbling Bed Unit Problem 

A preliminary V/UQ study of the bubbling bed unit problem has begun. This initial study will be used to 

assess the validity of the MFIX implementation of a bubbling fluidized bed and to lay the foundation for 

the collaborations between the CFD modelers of Element 2 and the UQ team of Element 6. Work has 

already been completed on the mesh size and simulation time sensitivity of the unit problem. Ongoing 

work considering a SA of various model parameters will be used for calibration of the model.  

The initial study of mesh size sensitivity allows us to reduce the total cell count of the simulation 

allowing for shorter simulation times. The sensitivity of the model to simulation time has also been 

investigated. Below we discuss the time needed for the bubbling bed to reach a statistically stationary 

state. The simulation results are averaged over time for comparison with the experimental data. The 

sensitivity of the simulation to the size and location of the time window for averaging was investigated 

for the bubbling bed unit problem. The details of the sensitivity analyses will be discussed later in this 

section.  

6.1 Simulation Details  

The following subsections describe the details of the MFIX simulation of the (Kim 2003) experiments. 

Simulation Domain: The domain of the bubbling bed is divided into two sections, the bed and the 

freeboard as shown in Figure 9. The bed is defined as the lower section of the system where the solid 

phase primarily lies. The freeboard is the upper section of the system, occupied by gas and any solid 

particulate that is ejected upwards. The fluidization gas enters at the bottom of the bed and flows through 

the solid phase until it reaches the freeboard. The freeboard has a fixed-pressure outlet on the top where 

the gas flow exits the system. Within the bed region are twenty-five heat transfer tubes arranged in a 

staggered array following (Kim 2003), as shown in Figure 9a along with the dimensions of the tube array. 

(a) (b)  

Figure 9: The Bubbling Bed Domain; the Experimental Setup of (Kim 2003) is Shown in (a) and the 

Simulation Domain is Shown in (b). In (b) Blue Represents the Solid Particle and Red the Gas. 
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Numerical Method: MFIX is used to model the bubbling bed unit problem. The unit problem focuses on 

validating the hydrodynamics of the bubbling bed, and as such, only the multiphase hydrodynamic 

equations are solved in MFIX.  

MFIX offers two methods for defining geometry, traditional or cut-cell. The traditional method uses a 

Cartesian grid and approximates curved surfaces by defining entire cells as part of the geometry. The 

resulting geometry has "stair step" edges. At high grid resolution, the stair step approximation can be 

sufficiently accurate; however, at low grid resolution the approximation is poor. The cut-cell method 

approximates the geometry by dividing cells into quadrilaterals or pentagons. These new cut-cells provide 

significantly better approximations for geometry compared to the traditional method given the same grid 

resolution. A comparison of the traditional and cut-cell approximations for a tube can be seen in Figure 

10. Simulations of both the cut cell and traditional grid methods were performed. The better resolution of 

the circular tubes in the cut cell method resulted in more accurate results when compared to the 

experimental data of (Kim 2003). As such, for the simulations discussed in this section only the cut cell 

mesh is considered. 

  

(a) Traditional (b) Cut-cell 

Figure 10: Discretization and Approximation of Tubes for the 50K mesh resolution. 

Grid Resolution: Several grid resolutions were studied to determine the lowest resolution that gives 

accurate results when compared to (Kim 2003)’s data. Reducing the grid size allows quicker run times, 

which will allow us to consider additional simulations for UQ analysis. Four grid resolutions were 

simulated with 20K, 30K, 40K, and 50K cells. These grid resolutions correspond to cell lengths of 3.8, 

3.1, 2.7, and 2.4 mm, respectively. The simulation results for each of the cases were compared to the 

experimental data, and the sensitivity of the result was analyzed. The results of these analyses will be 

presented later in this section.  

Experimental Data: The experiments of (Kim 2003) considered five different superficial gas velocities, 

0.055, 0.07, 0.11, 0.126, and 0.161 m/s. The results for the superficial gas velocity of  

0.126 m/s were reported in the most detail and therefore are used for comparison to the simulations. 

Experimental data on the bubble frequency, bubble phase fraction, and emulsion phases contacting time 

were presented in (Kim 2003) at five points around one of the heat transfer tubes (shown in black in 

Figure 9a). As shown in Figure 11, the measurements were taken at +90, +45, 0, -45, and -90 degrees. 
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Data was collected for 28 seconds and was averaged over a time window of 14 seconds that ran from 14 

to 28.  

 

Figure 11: Measurement Probe of (Kim 2003) 

Grid Resolution Study: The MFIX simulation domain shown in Figure 9b was run under the operating 

conditions of the experimental setup of (Kim 2003,), and the data for bubble frequency and phase fraction 

was calculated as in Equations 4 and 5 of (Kim 2003). The calculation is based on the predicted 

instantaneous void fraction at each time step (∆t=0.01 s). The results of the MFIX simulations are 

compared to the experiments in Figure 12 for a superficial velocity of 0.126 m/s and a fixed time window. 

Figure 12 compares the computed bubble frequency and bubble phase fraction for each of the MFIX 

simulations with the experimental data presented by (Kim 2003). These values are calculated from the 

instantaneous void fraction predicted by MFIX. To calculate the bubble frequency and phase fraction a 

cutoff threshold was defined to define a bubble in the bed (Li 2010). This calculation gives the impression 

that the lower resolution simulations can provide better predictions than the higher resolution simulations. 

However by analyzing the void fraction output directly as will be discussed in Section 6.2 it can be seen 

that the higher resolution simulations are less sensitive to the mesh resolution than the lower resolution 

simulations. 

 

Figure 12: Plots of the Bubble Frequency and Bubble Phase Fraction for Each of the Mesh 

Resolutions Considered. The Black Circles are the Experimental Data and Uncertainty 

taken from (Kim 2003). Data is Shown for 0.126 m/s Superficial Velocity. 
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The 50K cell simulation was also run at a superficial velocity of 0.11 m/s. As seen in Figure 13, the 

simulation is able to more accurately predict the experimental data at 0.11 m/s than at 0.126 m/s. 

 

Figure 13: Plots of the Bubble Frequency and Bubble Phase Fraction for the 50K Cell Resolutions 

and a Superficial Velocity of 0.11 m/s. The Black Circles are the Experimental Data and 

Uncertainty taken from (Kim 2003). 

Time Window Sensitivity: Additional simulations were run with the 50K cell mesh simulations to 

investigate the sensitivity to the time averaging window. The simulations were run for longer times and 

the simulation data was averaged over different time windows to investigate the sensitivity of the model 

to the simulation timeframe. For the 50K cell mesh simulations the data was analyzed up to 50 s and 

several averaging windows were considered. As seen in Figure 14, the size and position of the averaging 

window had little effect on the simulation results. 

 

Figure 14: Plots of the Bubble Frequency and Bubble Phase Fraction for Different Time Windows 

Considered. The Black Circles are the Experimental Data with Uncertainty taken from (Kim 2003). 

Data is Shown for 12.6 cm/s Superficial Velocity. 
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Parameter Sensitivity: Ongoing work is underway to investigate the sensitivity of the bubbling bed unit 

problem simulations to MFIX model parameters. The model parameters of interest have been identified 

based on discussions between Elements 2 and 6 and the V/UQ sub-team. Initial simulations will focus on 

the model parameters shown in Table 1. The mesh and time sensitivity simulations were calculated using 

the initial values, while the remaining SA will consider the ranges and values shown in the table. The 

weighting of continuous variables is described by a range (R) and a mode (M).  

Table 1: Parameters and ranges for UQ analysis. 

Model Coefficients Initial Values 
Distribution of Values 

for UQ  Analysis 

θ1 = Restitution (Particle-Particle) 0.9 R=[0.8,0.997], M=0.9 

θ2 = Restitution (Particle-Wall) 0.9 R=[0.8,0.997], M=0.9 

θ3 = Friction Angle (Particle-Particle) 30.0 R=[25,45], M=28.5 

θ4 = Friction Angle (Particle-Wall) 30.0 R=[25,45], M=28.5 

θ5 = Packed Bed Void Fraction 0.52 R=[0.4,0.6], M=0.5 

θ6 = Drag Model Syamlal & O’Brien  

Syamlal & O'Brien  33.4% 

Gidaspow  33.3% 

Wen & Yu  33.3% 

Initial simulations based on a simulation matrix developed by Element 6 have been started and will be 

used to calibrate the model as discussed in the UQ overview section (Section 5). As was done in the initial 

mesh and time sensitivity simulations, the void fraction, bubble frequency, and phase fraction will be 

compared between simulations, along with the instantaneous void fraction that is a direct output of MFIX. 

Initial plans call for 50 simulation runs; however, 25 cases will be run initially, and the results from the 

analysis of these cases will be used to adjust the number and focus of the simulations.  

6.2 Uncertainty Analysis (UA) of Initial Unit Problem Simulations 

UQ for the bubbling bed and any unit problem starts with the identification of the relevant model 

parameters along with their prior distributions, and the relevant model inputs and output(s). In this case, 

six model parameters  = [1,…6] were determined to be relevant, 1 = Restitution (Particle-Particle), 2 

Restitution (Particle-Wall), 3 = Friction Angle (Particle-Particle), 4 = Friction Angle (Particle-Wall), 5 

= Packed Bed Void Fraction, and 6 = Drag Model. 

The experimental data for the hydrodynamics has two inputs (x1 = placement angle of the sensor on the 

cooling tube, x2 = superficial velocity) and three outputs (y1 = bubble frequency, y2 = bubble phase 

fraction, and y3 = emulsion contact time). In our UQ studies, the lone model input of interest for 

calibration in this case is x1. As mentioned previously, several superficial velocities were considered; 

however, the most complete set of data was taken at 0.126 m/s, so this is the velocity that will be 

considered in the UQ analysis. For the outputs, only y1 and y2 are considered, as y3 is not reported for all 

cases or in as much detail as y1 and y2. The goal of the initial UQ analysis is to find good plausible values 

for   that allow the model output ym to match the experimental data y well at the observed input x1 

locations. In order to accomplish this, we must make several model runs at various   locations to assess 

how the model output varies over space, and ultimately decide what part of   space is likely in the 

sense that it allows the model to match the data.   
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The model is somewhat computationally demanding, in that it takes approximately two days to make a 

run. Therefore we made some initial runs with   fixed at the values shown in Table 1 to assess the 

impact of some of the model controls affecting run time, grid size, and simulated time. In particular, we 

ran the model at four different grid sizes of 20K, 30K, 40K, and 50K cells. 

The 50K cell grid was considered the “gold standard” based on its use in previous work (Li 2010), so the 

aim here was to see how coarse of a grid we could use and still produce results very similar to the 50K 

cell grid. Another question to be answered is how long of a simulation time is needed for the process to 

arrive at a statistically stationary state? Figure 15 provides a graphical summary of the void fraction (the 

actual output of the MFIX model, which is then converted into bubble frequency and bubble phase 

fraction as discussed previously) averaged over four simulation cells around the 0 degree location on the 

probe tube for the four mesh sizes. These plots provide histograms of void fraction for the 0 degree 

location across all time steps of the model run. It is pretty clear that the distribution of void fraction (i.e., 

the likelihood of seeing a given void fraction value at a randomly chosen time step) is very similar for 

40K and 50K cell mesh sizes, but possibly slightly different for the other two. The other angle locations 

presented similarly. We therefore decided on a 40K cell mesh size.   

Figure 16 displays the distribution of void fraction averaged over the 0 degree cells for various time 

periods of the simulation. The earlier time periods appear to have distributions that are changing (through 

~20 seconds).There does not appear to be any significant difference between any of the time periods after 

a time of 20 seconds. These findings were confirmed by comparing the distributions in the various time 

bins with Kolmogorov-Smirnov tests. The smallest p-value resulting from comparing the 20-25 second 

time period to the subsequent time periods was 0.27. We therefore decided to run the simulations out to 

30 seconds (i.e., 10 seconds of steady state). 

Since the model is expensive to run, the design of the   values at which runs are conducted is critical. For 

this, Latin Hypercube Sampling methodology (Helton 2003) is used to develop a design. This approach 

requires initial specification of distributions for the model parameters. Ultimately, this step would be 

necessary for the Bayesian calibration approach described below. The distributions of the model 

parameters were chosen based on previous knowledge and expert solicitation involving Element 2 team 

members, provided in Figure 17. Based on timeline and computational considerations, a Latin Hypercube 

Sample (LHS) of size 50 runs was chosen (split into two 25 run LHSs).Once these runs are available, they 

will be used in the Bayesian calibration scheme described below. 
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Figure 15: Distribution of Average Void Fraction for 0 Degree Cells for Various Mesh Sizes 

 

 

Figure 16: Distribution of Average Void Fraction of 0 Degree Cells for 

Various Time Periods of the Simulation 

 

0deg, size=m20k, cell 1

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

0deg, size=m30k, cell 1

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

0deg, size=m40k, cell 1

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

0deg, size=m50k, cell 1

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 0 to 5 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 5 to 10 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 10 to 15 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 15 to 20 seconds

void fraction
d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 20 to 25 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 25 to 30 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 30 to 35 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0

time 35 to 40 seconds

void fraction

d
e

n
s

0.5 0.7 0.9

0
2

4
6

8
1

0



CCSI Validation and Uncertainty Quantification 

Hierarchy for CFD Models  Rev.0, September 30, 2012 

-26- 

 

Figure 17: Prior Distributions of Uncertain Model Parameters for the 

Bubbling Bed Unit Problem. The Blue Lines Represent the Prior Distributions, 

and Histograms of the Resulting 50 Point LHS are Provided as Well 

An overview of Bayesian calibration was provided in the previous section. Here the application of this 

approach as it applies to this specific unit problem is illustrated.  Let yi be a 2-vector of the observed 

bubble frequency and bubble phase fraction from the experimental data at angle locations xi, i = 1,…,n. 

We assume the following statistical model for yi, 

𝒚 = 𝑓(𝑥 , 𝜽) + 𝜺  

where f is the MFIX calculation for bubble frequency and bubble phase fraction evaluated at 𝜽, the 

“correct” or “true” value of the model parameters, and 𝜺  are measurement errors assumed to have a 

bivariate normal distribution 𝜺   ( ,  ). Let  (𝜽  𝒚) be the normal likelihood for a potential value of 

the model parameters 𝜽 .The posterior distribution of 𝜽 given the observed data y, is  (𝜽  )  
 (𝜽 𝒚) (𝜽), where  (𝜽) is the prior distribution of theta which in this case is assumed to have the 

individual elements    independent and distributed according to Figure 17. There is no closed form for 

 (𝜽  ), as is most often the case, but we can sample from this posterior distribution with Markov Chain 

Monte Carlo (MCMC), which is a widely used approach in practice. The posterior sample can then be 

used to summarize the plausible values of 𝜽, which could explain the experimental data, i.e., that would 

“calibrate” the model. One caveat to this procedure is that each evaluation of the likelihood L requires the 

evaluation of the MFIX model f, and in principle L will need to be evaluated thousands of times in the 

MCMC sampling routine, which is of course not practical when f takes ~2 days to run. The standard 

approach to deal with such situations is to use an emulator (or reduced order model) in place of f, which 

can allow for uncertainty in the actual value of f at unobserved locations. In this case, we would take the 

50 evaluations of f from the LHS sample, and use those evaluations as additional observations in the 

likelihood function to fit an emulator (or surrogate or meta-model). This is described in detail in 

(Kennedy 2001) and (Higdon 2004). 

Finally to “validate” the model, we generally intend to use “five-fold cross validation.” This approach 

works by partitioning the experimental data into five disjoint subsets, then calibrating the model five 

times, each time holding out one of the subsets. The calibrated model is then used to predict the 
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experimental data that were not used in the calibration (i.e., predict “out-of-sample”). If the model can 

predict the experimental data to within an acceptable tolerance (e.g., to within two standard deviations of 

the measurement error), then the model will be considered validated. If the prediction quality is too poor 

to be considered acceptable, then further refinements to the model can be considered, including the 

possibility of adding a discrepancy term to the MFIX model to allow it to make better predictions 

(Kennedy 2001, Higdon 2004, and Higdon 2008). Calibration and validation of all unit problems will 

proceed in a similar manner to that described here. 
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7. Limitations and Gaps  

As discussed previously, the validation methodology laid out in this proposal can be considered as 

“application focused validation.” This validation plan is meant to be specific to the carbon capture 

systems being considered as part of the CCSI program. As such, we have defined a very narrow scope for 

our validation activities that will allow us to complete the validation in the time frame available and with 

the funds available to us. This leads to certain limitations and gaps in the methodology that make this 

validation plan inappropriate for use on more generic multi-physics, multi-scale systems.  

The first limitation is the unit problems selected and considered in the validation plan. Very specific unit 

problems are outlined in our validation plan and are based on the specific CCSI solid sorbent carbon 

capture system designs. Although some of the unit problems may apply to systems outside of the CCSI 

program, the overall analysis only applies to the CCSI specific systems and is not applicable to outside 

systems. Also, the unit problems that we have chosen to consider limit the validation plan to the currently 

considered CCSI designs. If extreme changes are made in the geometry, sorbent particles design, or flow 

regimes considered we may have to re-evaluate the validation plan.  

Another limitation relating to the unit problems will be the availability of high quality experimental data 

and error estimates. We will be relying on previously published validation studies, and as such, will most 

likely not have direct access to the experimental data. We will only have access to the published 

information on the experiments and simulations. This may limit our ability to identify and quantify all of 

the errors in the unit problems. We will attempt to use the most complete validation studies available; 

however, we will most likely not be able to find high quality experimental data for all of the unit 

problems. 

The second limitation is the proposed sequentially coupled approach for the overall validated uncertainty 

quantification goal. As mentioned above, this is proposed mainly due to the lack of experimental data 

with quantified measurement uncertainty at the unit problem scale. Hence the validation plan presented 

here aims first to provide quantitative confidence intervals on the CFD simulations for the baseline 

design. However, this analysis will be augmented by additional UQ studies where uncertain modeling 

parameters are varied within the bounds that are physically permissible by the problem, hence 

propagating uncertainties from input parameters to the various system performance metrics.   

A third limitation is the inability to incorporate all parameters, and completely specify their associated 

distributions. In the initial definition phase of the UQ analysis, it is important to narrow down the set of 

parameters of interest to a modest size that is feasible for subsequent computations. The expensive 

function evaluations encountered in CFD studies necessitates focusing on a reduced parameter set. This 

results in a tradeoff between computational effort and the risk of excluding important parameters. The use 

of statistical experimental design techniques can ameliorate this situation by reducing the number of 

simulations required to examine high-dimensional parameter spaces. In addition, while expert knowledge 

can often be used to specify reasonable ranges for parameter studies, initial characterization of parameter 

distributions is generally approximate. 

Another limitation of the validation plan is the gaps, i.e., omissions of the incrementally coupled cases, in 

the validation hierarchy laid out in this document. These include the consideration of the incremental 

coupling of the unit problems before upscaling, which would require a large amount of experimental data 

and numerous validation studies. The lack of data at the intermediate device scale (25 MWe, 100 MWe) 

is also a gap in available data that will most likely not be resolved during the validation process. 

Insufficient data at other scales may further limit the validation and UQ process. 
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Due to the gaps and limitations of the V/UQ studies proposed herein, we will rely heavily on the expertise 

and past experiences of the CCSI team members, especially those directly involved in Elements 2 and 6. 

Their understanding of the problems and insight from past experiences will help to guide the validation 

work to ensure that we are appropriately considering all of the physical and scaling effects that will affect 

the validity and errors associated with the CCSI modeling activities, and that we are minimizing the 

effects of these gaps and limitations on the validation of the CCSI device scale models. 
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8. Conclusions 

A multi-tiered validation strategy has been laid out for the CCSI CFD modeling of the full scale carbon 

capture system. The goal of the proposed validation and UQ analysis is to validate the CFD predictions 

for a specific solid sorbent carbon capture system of interest to the CCSI program. We do not intend to 

lay out a general validation methodology that would be appropriate for other complex multi-physics 

systems. That is outside the scope of CCSI and the work proposed herein. 

Instead, the proposed validation and UQ methodology aims to provide quantitative confidence on the 

CFD simulations of larger to full scale carbon capture systems by the coupling of simpler physical 

systems and upscaling to larger systems. As shown in Figure 1, a multi-tier methodology is proposed 

which divides the complexities of the full scale system into simpler sub problems. We will start by 

validating simple unit problems which represent pieces of the multi-physics of the entire carbon capture 

system. We will rely on previously published validation studies for the unit problems and will not attempt 

to re-validate the unit problems. We will next move on to considering the effects of upscaling and coarse 

graining methodologies which are used to deal with the geometrical issues associated with simulating a 

full scale carbon capture system. Validation of the upscaling will focus on the development of filtered 

models and their validation with experimental data and fine scale models. Next we will consider 

decoupled and coupled laboratory and pilot scale validation cases to investigate the effects of using the 

filtered models in larger scale systems and the combined effects of upscaling and unit problem coupling 

on the accuracy of the simulations.  

The final tier of Figure 1 is the intermediate and full scale carbon capture systems. The overall goal of all 

of the validation activities is to quantify our confidence in the predictions of the full scale carbon capture 

simulations. Since there is no validation data available for a full scale carbon capture system we will use 

the information gained from the smaller scale validation problems to quantify our confidence in our full 

scale simulations. Based on the individual tiers of the validation plan, we will be able to separate the 

effects of coupling vs. upscaling vs. model selection on the overall error of the full scale simulations.  

The validation methodology laid out in this proposal can be considered as “application focused 

validation.” We have defined a very narrow scope for our validation activities that is specific to CCSI and 

will allow us to complete the validation in the time frame available and with the funds available to us.  

As this effort progresses, the knowledge gained will be used to develop an integrated approach to model 

validation and UQ for the CFD models used in the CCSI program. The other models developed in the 

CCSI program (i.e., reduced order models, process and system level models, etc.) can then be validated 

against (or calibrated to) those validated CFD models. This will ultimately allow the fundamental, 

validated physics-based models to be used to improve the other CCSI models. 
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