Optimal Design and Operation of Hybrid CO\textsubscript{2} Capture Systems

Miguel Zamarripa*, John Eslick*, Andrew Lee*, Olukayode Ajayi*, Zachary Wilson+, Nick Sahinidis+ and David Miller*

*National Energy Technology Laboratory, Pittsburgh, PA
+Carnegie Mellon University, Pittsburgh PA
Post Combustion Technologies

General issues:
- Costing Methodologies
- Optimization frameworks

Post Combustion CO₂ Capture

Solid Sorbents – adsorption
Issues
- Energy Intensive
- Plant complexity

Solvents - absorption
Issues
- Energy Intensive
- Plant complexity

Membrane-based – gas permeation
Issues
- Flue gas with low CO₂ concentration

Hypothesis
- Hybrid CO₂ capture plants could reduce the capture costs.

Intermediate GOALS
- Establish a consistent framework to optimize the structure and design of capture technologies
 - Superstructure optimization framework
- Robust Mathematical models
Superstructure Optimization Framework

- **Discrete Decisions:**
 - How many units?
 - Parallel trains?
 - What technology used for each reactor?

- **Continuous decisions:**
 - Unit geometries,
 - Operating conditions (temp, pressure, flow rates, compositions)

Flue Gas
650 MW fired coal power plant

CO₂ rich gas Compression chain

Regeneration beds

Clean Gas

- Adsorber beds

Cold in

- **aₙ**
- ...

Warm in

- **a₁**
- **d₁**
- **d₂**
- ...

Hot in

- **Steam + CO₂**

MINLP
Problem Statement

Cost of Electricity (COE)

\[
\begin{align*}
\text{min } & \text{COE} \\
\text{s.t. } & \text{Material Balances} \\
& \text{Energy balances} \\
& \text{Equipment design}
\end{align*}
\]

Adsorption model

- Design:
 - # of parallel units,
 - # of adsorbers and # of regenerators,
 - Size of equipment (Heat exchangers, reactors, blowers)
- Operation:
 - Flows (molar and mass flow rates)
 - Temperatures (Coolant, steam, gas, solids)
 - Pressure (gas and solids)
 - Concentrations (gas and solids)

Membrane separation model

- Design:
 - # of membranes to be installed,
 - Size of equipment (Heat exchangers, pumps, expanders, membranes)
- Operation:
 - Flows (permeate, retentate)
 - Temperature (gas, coolant)
 - Pressure (retentate and permeate sides)
 - Concentrations (gas)

\[
\begin{align*}
\text{min } & \text{COE} \\
\text{s.t. } & \text{Material Balances} \\
& \text{Energy balances} \\
& \text{Equipment design}
\end{align*}
\]

- Operating Cost
- Variable Cost
- Fixed annual investment cost
- Net power cost
Solid Sorbent System

Adsorption system
Plant consists on:
- Flue gas (650 MW power plant)
- 90 % capture

Design Decisions:
- # number of parallel units,
- Flue gas heat exchanger,
- Adsorber and Regeneration trains,
- SolidLean and SolidRich Heat exchangers.

Operation
- Flows, temperatures, concentrations
Solid Sorbent System

Adsorption & Regeneration process
- Bubbling fluidized bed reactor
 - Lee and Miller 2013\(^1\)
 - One dimensional model
 - Mass & energy balances
 - Integrated heat exchanger
 - PDEs 10,000 Equations

Mathematical Model
- Mix of \textit{first principle}
- and \textit{Surrogate models} to describe the process.

\(^1\)Lee A, Miller, D.C. I&ECR 2013.
Solid Sorbent System

Algebraic Surrogate Models

First Principle Models

- Heat exchangers, blowers, pumps, etc.
- Nonlinear algebraic equations

Superstructure Optimization

Carbon Capture Process

Optimized Process
Framework for Optimization and Uncertainty Quantification and Surrogates - FOQUS

- Carbon Capture Simulation Initiative tool set
 - Simulation, Statistics, Uncertainty Quantification, Optimization, Surrogate Modeling, Dynamic Models.

ALAMO – Automated Learning of Algebraic Models

“Surrogate models correlate the input and output variables of the process“

\[
\begin{align*}
\mathbf{z}_i &= f(\mathbf{x}_1, \ldots, \mathbf{x}_D) \quad \forall \; i \in K
\end{align*}
\]
Surrogate Model Generation

- **Surrogate models:**
 - Simulation
 - Model 10,000 PDE’s
 - Aspen Custom Modeler
 - Data set
 - 2000 samples
 - Latin Hypercube Sampling method

- **Reactor Design**
 - Dt – unit diameter (m)
 - Heat Exchanger design
 - Solids Fluidization bed

- **Gas Outlet**
- **Solids Outlet**
- **Coolant Outlet**
- **Flue gas**
 - Flow rate
 - Pressure
 - Temperature
 - Concentration
Solid Sorbent System

- **Surrogate models:**
 - **Simulation**
 - Model 10,000 PDE’s
 - Aspen Custom Modeler
 - **Data set**
 - 2000 samples
 - Latin Hypercube Sampling method
 - **Surrogate model generation**
 - Validation and cross-validation

![Fit data](image1)

![Cross-validation](image2)

$R^2 = 0.99$
Optimal Solutions

Optimization:
- Superstructure optimization allows us to explore all the possible plant layouts.
- 90% CO₂ Capture.

<table>
<thead>
<tr>
<th>Fixed layout</th>
<th>Best Case</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% COE increase</td>
<td>-</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Adsorber beds</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Regeneration beds</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ads parallel units</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Rgn parallel units</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Membrane based systems

Membrane separation

Design:
- # of membranes to be installed
- Membrane area
- Size/cost of Heat exchanger, pumps, compressors, expanders

Operation:
- Flows (feed, permeate, retentate)
- Temperature (gas, coolant)
- Pressure
- Concentrations (gas)

T_{mem} = 25 \, \text{C}

Permeance = fixed \, (\text{kgmol/m}^2 \text{s bar})

Operation = co-current flow

Pressure ratio = P_{in} \, \text{(bar) / P_{out} \, \text{bar}}

90% Capture
97 \% \text{CO}_2 \, \text{pure to Storage}
Membrane based systems

- Separation stage

Flue Gas
- 10-15 % CO2
- 1 bar
- 327 K

Stage:
- Compression system
- Heat exchanger
- Membrane
- Vacuum pump
- Expander

Flue Gas
- 3-6 bar
- 298.15 K

Flue Gas
- 3-6 bar
- 400-600 K

T_{mem} = 298.15 K

Retentate
- 3-6 bar
- 298.15 K

Permeate
- 0.01 - 1 bar
- 298.15 K
- 0.25 – 0.8 % CO2

Permeate
- 1 bar
- 298.15 K

\[\min_{x} f(x) \]

s.t.
\[g_i(x) \leq 0, \quad i = 1, \ldots, n \]
\[h_j(x) = 0, \quad j = 1, \ldots, m \]
\[x \in X \]
Optimal Solutions

Optimization:
• Configuration: 3 membrane stages, flash unit, recirculation R1 and R2 to M3
• 90% CO₂ Capture

Optimization:
• Configuration: 2 membrane stages, flash unit, recirculation R1 and R2 to M3
• 15% COE increase relative to best case
• 70% CO₂ Capture
Conclusions and Future Work

- Configuration of CO\textsubscript{2} systems is extremely **important** for individual technologies.
- Establish a **consistent framework** for evaluating multiple technologies is a critical task.
- Combined technologies could lead to improvements in the separation performance while reducing the energy penalty.

Similar to Superstructure Optimization of Water Networks (Yang & Grossman 2011)

Given is:
- Set of separation stages (U)
 - Adsorber, regenerator, membrane, **others**.
 - Heat exchanger, pump, compressor, expander.
- Minimize Cost of Electricity

MINLP: Mix of First Principle and Surrogate Models
Acknowledgments
National Energy Technology Laboratory, Center for Advanced Process Decision Making and Oak Ridge Institute for Science and Education.

Thank you for your attention

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.