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Post Combustion Technologies

General issues: Post
- Costing Methodologies Combustion CO, Studied
* Optimization frameworks Capture independently
I I
| | -
Solid Sorbents — Solvents - bl\gzrendbr_aggs
adsorption absorption permeation
Issues Issues Issues
« Energy Intensive « Energy Intensive * Flue gas with low CO,
* Plant complexity * Plant complexity concentration

» Hypothesis
= Hybrid CO, capture
plants could reduce
the capture costs.
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> Intermediate GOALS

= Establish a consistent framework to optimize the
structure and design of capture technologies

» Superstructure optimization framework
= Robust Mathematical models
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Superstructure Optimization Framework

Clean Gas

. CO2 rich gas
,Compressmn

Adsorber
beds

Flue Gas
650 MW
fired coal
power plant

H1
Util In

» Discrete Decisions:

» Continuous decisions:
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Regeneration
beds

%}

How many units? Parallel trains?
What technology used for each reactor?

Steam + CO2

MINLP

Unit geometries, Operating conditions (temp, pressure,
flow rates, compositions)
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Problem Statement

Cost of Electricity (COE) Operating Cost
. i

min COE min COE « Variable Cost
. ¢ _ * Fixed annual
s.t. Material Balances s.t. \aterial Balances investment cost

Energy balances
Equipment design

Energy balances .
Equipment design

Net power cost

Adsorption model Membrane separation model

» Design: » Design:
= # of parallel units, = # of membranes to be installed,
» # of adsorbers and # of regenerators, = Size of equipment (Heat exchangers,

= Size of equipment (Heat exchangers, pumps, expanders, membranes)

reactors, blowers)

» Operation: » Operation:
» Flows (molar and mass flow rates) » Flows (permeate, retentate)
» Temperatures (Coolant, steam, gas, = Temperature (gas, coolant)
solids) = Pressure (retentate and permeate

Pressure (gas and solids)
Concentrations (gas and solids)
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Concentrations (gas)
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Solid Sorbent System

Adsorption system

Plant consists on:
» Flue gas (650 MW power plant)

Clean Gas

SolidLeanHX
‘ Rich CO, Gas

to storage

O

A 4

» 90 % capture
Adsorber

Design Decisions: beds

» # number of parallel units,
» Flue gas heat exchanger,
» Adsorber and Regeneration trains,

> SolidLean and SolidRich Heat

# Nu
exchangers.

Operation
> Flows, temperatures, concentrations
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Regeneration
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Solid Sorbent System

Rich CO, Gas
Clean Gas SolidLeanHX to storage
Adsorption & Regeneration process 1
> Bubbling fluidized bed reactor "*
= Lee and Miller 20131 1
= One dimensional model
= Mass & energy balances t
= |ntegrated heat exchanger /Qgggfbef ”
= PDEs 10,000 Equations 2
L
# Nu
Mathematical Model e cas _I
« Mix of first principle >
« and Surrogate models to describe SolidRichHX
the process. FG_HX
Regeneration
1Lee A, Miller, D.C. I&ECR 2013. beds



Solid Sorbent System

Superstructure Optimization

Clean Gas 1 CO2 rich gas !

Q Y : Compression i

Adsorber _. ] “ chaln __________ |
beds T I .

Regeneration
cold in = L&
a4

beds

» Heat exchangers,
blowers, pumps, etc.

* Nonlinear algebraic
equations

Optimized
Process

L U.U.H.E
HuHHE
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Framework for Optimization and Uncertainty Quantification
and Surrogates - FOQUS

» Carbon Capture Simulation Initiative tool set

= Simulation, Statistics, Uncertainty Quantification, Optimization, Surrogate
Modeling, Dynamic Models.

/Process | /Surrogate
Simulation model
» Data sampling » Generation
» Data analysis « Validation

VData refining Y, K
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ALAMO - Automated Learning of
Algebraic Models
“Surrogate models correlate the input and

output variables of the process”

g N
| | Optimization
P Input Ou';put
« GAMS variables variables
e VValidation Process simulation :i
K (FOQUS) / reRP f | 2 eRK
a <o ot % |z = f(z)

K

Data set (simulations)

Final surrogate Model:
= f(xl, ...,xD) ViEK
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Surrogate Model Generation

» Surrogate models:

=  Simulation
* Model 10,000 PDE’s
* Aspen Custom Modeler

= Data set
» 2000 samples
+ Latin Hypercube Sampling method

Carbon Capture Simulation Initiative LABORATORY
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Solids Inlet

Coolant —

| Lawrence Livermore
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Reactor Design

* Dt — unit diameter (m)

« Heat Exchanger design
« Solids Fluidization bed

Gas Outlet
/Jﬁ Solids Outlet
- )
BFB
Reactor —
Coolant Outlet
Flue gas
* Flow rate
e Pressure
« Temperature
* Concentration
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Solid Sorbent System it data T

& Estimate +/- 1 std dev
Actual +/- 7.0%

12000

10000

» Surrogate models:

= Simulation

* Model 10,000 PDE’s

* Aspen Custom Modeler
= Data set

» 2000 samples
+ Latin Hypercube Sampling method

8000

6000

4000

2000

4000 6000 8000 10000

= Surrogate model generation Rigorous Gas Outlet Flow rate
« Validation and cross-validation Cross-validation R2= 0.99

Surrogate Gas Outlet Flow rate

2000 —

0000

8000

65000

4000

2000 4”""””,,—"'
0

0 2000 4000 6000 8000 10000 12000

Rigorous Gas Outlet Flow rate

Surrogate Gas Outlet Flow rate

R?=0.99
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Optimal Solutions

Clean Gas SolidLeanHX Clean Gas A SolidLeanHX
A

L O

Regeneration
beds

Adsorber

Rich Gas
beds

Adsorber

beds
Regeneration

beds

Flue Flue Gas (CO,
o SolidRichHX Sf?j '('Eg)z = SolidRichHX and H0)
Fixed layout
o Case

Optimization:

. Superstructure % COE increase 3% 4 % 5 %
optimization allow us to ~ Adsorber beds 2 3 3
explore all the possible Regeneration 2 1 2
plant layouts. beds

* 90% CO, Capture. Ads parallel units 6 8 6

Rgn parallel units 4 6
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Membrane based systems

Membrane separation

Design:

» # of membranes to be installed
» Membrane area

» Sizel/cost of Heat exchanger,
pumps, compressors, expanders

Operation:

> Flows (feed, permeate, retentate)
Temperature (gas, coolant)
Pressure

Concentrations (gas)

Y V VYV

90% Capture
97 % CO, pure to Storage
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Optional

—_—
Fixed

D Retentate M3

Expander

Retentate M1
Flue Gas

(Power Plant

650 MW) L
9[:‘-—@-) Expander|

Compressor M3
Permeate M1 Permeate M3

Retentate M2 pr—t—
T=-30C
@_5 P = 22 bar
vl ()
=\

Permeate M2

CO, to
Storage

Tem =25C

Permeance = fixed (kgmol/m2 s bar)
Operation = co-current flow
Pressure ratio = Pin (bar) /Pout (bar)
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Membrane based systems

» Separation stage

Flue Gas Flue Gas Retentate
- 10-15 % CO2 - 3-6 bar _ - 3-6 bar
-1 bar -298.15 K Tmem =298.15 K -298.15 K
- 327K > Q—>
Flue Gas
- 3-6 bar f\’ ‘ >
- 400-600 K Permeate Permeate
-0.01 -1 bar -1 bar
-298.15K - 298.15 K
Stage: - 0.25 - 0.8 % CO2
- Compression system .
- Heat exchanger . &
- Membrane S e .
- Vacuum pump g:(x) <0, i=1,..,n
- Expander hj(x) =0, j=1,..,m
x €X
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P — Permeate
R — Retentate
M — Membrane

<«{1 __Rs
Flue R1
Gas e
;D > M1 s MS(—I
R2
P1 >
M2 | p2
v co,to
storage
Optimization:

» Configuration: 3 membrane
stages, flash unit, recirculation R1
and R2 to M3

* 90% CO, Capture
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Optimal Solutions

Flue
Gas >
;D > M1 <—D
R2
P1 g _)P2
J  co,to
storagt
Optimization:

» Configuration: 2 membrane
stages, flash unit, recirculation R1
and R2 to M3

* 15% COE increase relative to best
case

* /0% CO, Capture
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Conclusions and Future Work

» Configuration of CO, systems is extremely important for individual technologies.
» Establish a consistent framework for evaluating multiple technologies is a critical

task

» Combined technologies could lead to improvements in the separation performance

while reducing the energy penalty.
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] Gas

- —\_p

<= o~
Flue

Gas CO, to

storage

Similar to Superstructure Optimization of Water Networks
(Yang & Grossman 2011)
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' Given is:
'« Set of separation stages (U)
' » Adsorber, regenerator,
membrane, others.
* Heat exchanger, pump,
, compressor, expander.
'+ Minimize Cost of Electricity

MINLP: Mix of First
Principle and Surrogate
Models
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