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Overview
• Introduction

– Process optimization 
– Formulation and solution strategies

• Bilevel Optimization  MPCC
– Phase equilibrium
– Heat integration

• Process Optimization Case Studies               
– MHEX with phase changes (CO2

recovery)
– Distillation Synthesis (Air Separation)

• Conclusions



Future Generation Power Plants: 
Oxycombustion with CO2 Capture

Process Optimization Models:
• ASU – distillation (MPCC)
• Boiler – PDAE/CFD Models
• Steam Cycle – EO models
• CPU – MPCC models

Schwarze Pumpe, 30MW Pilot (2008)
Feed: Lignite; Bituminous Coal

Brandenburg, Germany



Bi-level Process Optimization Problems: 
an Alternative to (some) MINLPs

Formulation Guidelines
• Attempt to define regular, convex inner minimization 

problem (optimistic bilevel problems, Dempe, 2002)
• Require connected feasible regions for inner problem 

variables (no exclusive ORs!)

http://www.cheme.cmu.edu/
http://www.cheme.cmu.edu/


Solving Bi-level Optimization Problems 
as MPCCs (Ralph, Wright, 2004)
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Bi-level Process Optimization 
Models

Min Overall Objective
s.t. Conservation Laws

Performance Equations
Constitutive Equations
Scalar Nonsmooth Operators
Phase & Chem. Equilibrium
Heat Integration
Process/Product Specifications

http://www.cheme.cmu.edu/
http://www.cheme.cmu.edu/


Bi-level Process Optimization 
Models

Min Overall Objective
s.t. Conservation Laws

Performance Equations
Constitutive Equations
Process/Product Specifications

Minimize Utilities
Through Heat Integration

Scalar Nonsmooth Operators
(abs, max, sgn,…)

Minimize Gibbs Free Energy
(Phase and Chemical Equilibrium)

http://www.cheme.cmu.edu/
http://www.cheme.cmu.edu/


Complementarity Formulations: 
Common Nonsmooth Functions in Process Models
• Abs(*)

• Min(*,*) & Max(*,*) (includes Pos(*), Neg(*))

• Signum(*)

• If * Then * Else * (includes Piecewise Functions)
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CEOS Phase Equilibrium through 
Complementarity (Kamath, Grossmann, B., 2011)

F, Fc

Fc

Liquid Stream

Vapor Stream
zL, φ(zL)

zV, φ(zV)

Mass Balance + Necessary KKT conditions



CEOS Phase Equilibrium through 
Complementarity (Kamath, Grossmann, B., 2011)

zL, φ(zL)

F, Fc

Fc

0 ≤ sV | V ≥ 0
0 ≤ sL | L ≥ 0
-sL ≤ β – 1 ≥ sV

Liquid Stream

Vapor 
Stream



f’’(z) constraint misclassifies 
supercritical mixtures

(SC-L or 
SC-V)

Supercritical 
(SC-L)

Subcritical (SC-V)

• Requires VLE relaxation
for  P > Pcrit and SC-L 

• More constraints for 
correct identity of L, V in 
Subcritical Region 

(Tcrit Pcrit)



Bilevel Optimization: Simultaneous Process 
Optimization & Heat Integration

(Duran, Grossmann, 1986)

• Process optimization and heat integration tightly coupled
• Allows production, power, capital to be properly considered
• Data for pinch curves adapted by optimization

Process 
Optimization

Heat  
Integration

T

Q

Qs

Qw



Bilevel Optimization: Simultaneous Process 
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(Duran, Grossmann, 1986)

• Process optimization and heat integration tightly coupled
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Process 
Optimization

Heat  
Integration
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Simultaneous Process Optimization & Heat 
Integration
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LP Transshipment Model
- Stream temperatures as 

pinch candidates
- Energy balance over each 

temperature interval
- Form energy cascade with 

nonnegative heat flows
Models pinch curves



Bilevel Reformulation: Simultaneous 
Process Optimization & Heat Integration
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Replace with smoothed max(ξ, 0) functions
Further improved at points where ξ = 0. 
(Unroll summations)



CO2 Processing Unit (CPU)
(adapted from Fu and Gundersen, 2012)

19

Dry Flue Gas

CO2 Product
150 bar

Vent
Ar, N2, O2

Vent

Zone 2
Multistream Heat Exchanger(s)Zone 1

Chilled Sea Water

Zone 1
Chilled Sea WaterCompression/Expansion Work

Cooling/Heating for Heat Exchange
Phase Separation Units



CPU Optimization Problem

Minimize Shaft Work + 0.01 (Qs
1 + Qw

1) + 5 ( Qs
2 + Qw

2 )
+ Complementarity Penalties

s.t. Flowsheet Connectivity
CEOS (Peng-Robinson) Thermodynamics
Heat Integration Model with Multiple Zones
Avoid Dry Ice Constraints
Zone 1 Utility Min. Temperature
Pump and Compressor Model
Other Unit Operation Models
CO2 Recovery ≥ 96.3 mole %
CO2 Purity ≥ 94.6 mole % 

Final NLP size: 11,285 constraints, 11,808 variables
Entire 6 step NLP-based sequence: 308 CPUs



CPU Optimization Results
(Dowling et al., 2015) 

• Optimal heat integration through D-G Formulation
• Superior Heat/Power integration compared to literature
• Global solutions promoted through Multi-start NLP



Distillation: Complementarity Formulation
(Raghunathan, B, 2002)

• Consists of Mass, Equilibrium, Summation 
and Heat (MESH) equations

• Continuous Variable Optimization 
• number of stages 
• feed location
• reflux ratio 

• When phases disappear, MESH fails.
• Reformulate phase minimization, 

• embed complementarity
• Model dry stages, Vaporless stages

• Initialization with Shortcut models based 
on Kremser Equations (Kamath, 
Grossmann, B., 2010)
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Distillation Optimization (MESH Model)
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Distillation Results – Min Heat Duty

x B,hk ≥ 0.9, xD,lk ≥ 0.9

x B,hk ≥ 0.8 

x B,hk ≥ 0.45 



Disappearing Phases Allow Bypass Stages: 
MPCC Optimization Formulation

(Dowling, B., 2014)

• Dummy streams equilibrium streams based on 
MPCC for phase equilibrium 

• Bypass usually leads to binary solution for ε.
• Mixing discouraged in optimization (energy inefficient)
• Fractional ε is physically realizable. 

• #Stages = Σn ε 



MPCC sequence with Distillation Models



Heat Integration and Distillation Optimization 
Air Separation Units

Boiling pts (1 atm.)
•Oxygen: 90 K
•Argon: 87.5 K
•Nitrogen: 77.4 K

• Feedstock (air) is free: dominant 
cost is power for compression

• Multicomponent distillation with tight 
heat integration

• Nonideal Phase Equilibrium: Cubic 
Equations of State

• Phase conditions not known a priori



ASU Synthesis Optimization Problem
Minimize Compression Energy + Qs + Qw

+ Complementarity Penalties

s.t. Flowsheet Connectivity
CEOS (Peng-Robinson) Thermodynamics
Heat Integration Model
Distillation Cascade Model
Unit Operation Models
O2 Purity ≥ 95 mole % 
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• Find optimal T, P, flows in superstructure
• MPCC with ~16,000 variables and constraints
• Automated 6-step NLP-based initialization, simple  complex models  
• Multi-start procedure to promote global solutions
• ~16 CPU min for 6-step sequence using CONOPT3



ASU Superstructure

• Flash vessels 
represent feed 
stages

• Cascade sections 
contain a variable 
number of stages

• NLP selects P, T, 
flowrates and best 
recycle configuration Multistream

Heat Exchanger



Air Feed: 1.83 mol/t
300 K, 3.53 bar

10 Stages
3.5 bar

21 Stages
1.1 bar

Air Feed: 0.17 mol/t
320 K, 40 bar

N2 Product: 1.57 mol/t
298 K, 1.01 bar

O2 Product: 0.43 mol/t
315 K, 1.01 bar

Optimized 
ASU Process

• Balanced 
Reboiler/Condenser

• No external utilities, only 
compression 

• ΔTmin = 1.5 K: 86% 
compressor efficiency

• Optimal Power: 
196 kWh/tonne O2



Heat Integration Results

Heat integrated 
separately

ΔTmin = 0.4 K

Hot Streams

Cold Streams

Pinch
Points

ΔTmin = 1.5 K

Tight heat integration with multiple pinch points
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Optimized: Low Energy

Optimized: Low Capital

Am. Air Liquide
NETL (2010)

86% efficient compressors



Process Optimization Based on O2 Purity 
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Conclusions
• Equation Oriented Process Optimization 

– Fast Newton-based NLP solvers
– Requires robust formulations and initializations

• Exploit bilevel problems as MPCCs
– Simultaneous heat integration and optimization
– Phase (and chemical) equilibrium
– Optimal synthesis of distillation sequences

• Process optimization applications
– CO2 Compression Processes (HEX, compressors, phase 

changes)
– Heat integrated separation (ASUs)
– Integrated flowsheet optimization 
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Process Optimization for Oxycombustion

Conservation 
Laws

Performance 
Equations

Constitutive
Equations

Component 
Properties



Emerging Equation-Oriented Framework for 
Process Optimization

• Model in GAMS (or AMPL, AIMMS)
• Exact Jacobians/Hessians and sparse equation structure 
• Fast Newton-based NLP solvers
• NLP sensitivity (post-optimality and interpretation, multi-

level opt., …)
• EO-Modeling Enables:

– Efficient MINLP Strategies
– Efficient Global Optimization
– Large-scale Optimization under Uncertainty

• But process models are not just equations!
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