

US Department of Energy's Carbon Capture Simulation Initiative: Computational Tools for Accelerating Process Development

Debangsu Bhattacharyya Department of Chemical Engineering West Virginia University Process Modeling Team Lead, CCSI

David C. Miller U.S. Department of Energy National Energy Technology Laboratory Technical Lead, CCSI

West Virginia University,

PSE:APM Forum 2013- New York June 5-6, 2013

CCS For Accelerating Technology Development **Carbon Capture Simulation Initiative**

Identify promising concepts

Reduce the time for design & troubleshooting

Quantify the technical risk, to enable reaching larger scales, earlier

FLUOR

SOUTHERN

COMPAN

PRODUCTS

aspentech

Stabilize the cost during commercial deployment

National Labs Academia rrrrr Pacific Northwest LABORATORY Los Alamos FST 1943 BOSTON

Carbon Capture Simulation Initiative

THE UNIVERSITY OF UTAH

Ex on Mobil

AMERICAN

ELECTRIC

POWER

Chevron

PHILLIP

Advanced Computational Tools to Accelerate Next Generation Technology Development

Tools to develop an optimized process using rigorous models

Basic Data Submodel

SORBENTFIT

$$2R_2NH + CO_{2,(g)} \leftrightarrow R_2NH_2^+ + 2R_2NCO_2^-$$

 $H_2O_{(q)} \leftrightarrow H_2O_{(phys)}$

 $R_2NH + CO_{2,(g)} + H_2O_{(phys)} \leftrightarrow R_2NH_2^+ + HCO_3^-$

*Lee et al. A model for the Adsorption Kinetics of CO₂ on Amine-Impregnated Mesoporous Sorbents in the Presence of Water, 28th International Pittsburgh Coal Conference 2011, Pittsburgh, PA, USA.

> Pacific Northwest

NETL Lawrence Livermore

Development of Bubbling Fluidized Bed Model

- 1-D two-phase pressure-driven non-isothermal dynamic model of a solidsorbent CO₂ capture in a two-stage bubbling fluidized bed reactor system.
- Models are flexible such that it can be used as an adsorber or regenerator
- Embedded cooler/heater depending on the application
- Flexible configuration- solids can enter/leave at/from the top or bottom
- A 2-stage adsorption model with customized variables suitable for incorporating UQ has been developed

MODEL DEVELOPMENT

- Gaseous species : CO₂, N₂, H₂O
- Solid phase components: bicarbonate, carbamate, and physisorbed water.
- Transient species conservation and energy balance equations for both gas and solid phases in all three regions.

*Lee, A.; Miller, D. A One-Dimensional (1-D) Three Region Model for a Bubbling Fluidized Bed Adsorber. Ind. Eng. Chem. Res. 52, 469-484, 2013

Lawrence Livermore

Alamos

orthwest

Bubbling Bed Model : Results

1.4

1.2

1

0.8

0.6

0.4

0.2

0^L 0

0.2

0.4

Z/L

0.6

0.8

Molar Loading (mol/kg solids)

Solids overflow exit type configuration

Bic Car

H,O

1 Solids

8

Inlet

Development of Moving Bed Model

Lawrence Livermore National Laboratory

os Alamos

EST 1943

- A 1-d two-phase model of the moving bed model with embedded heat exchan mainly for regenerator
- > Integrated pre and post-heat exchangers are considered for heat recovery
- > Gas and solids flows are modeled by plug flow model with axial dispersion
- For pressure drop calculation, a modified Ergun equation by using the slip velocity between the solids and gas is used instead of the superficial fluid velocity
- Energy balance equations consider heat transfer between solid and gas and tube wall and the mixed phase
- Heat transfer coefficient between the mixed phase and the tube wall is calculated by a modified packet-renewal theory
- Bed hydrodynamics are described by analogy to fixed bed and fluidized bed systems
- Reaction kinetics are similar to the bubbling bed model

Moving Bed Regenerator: Results

10

Solid Sorbent Models: Balance of the Plant

Heat-Recovery System

> Dynamic model of heat recovery system including pre and post-heat exchangers has been completed

Solids Transport

Model of pneumatic transport system has been completed by considering various options for transport gas with the design objective of minimizing auxiliary power consumption

Lawrence Livermore

National Laboratory

Adsorber to Regenerator

Regenerator to Adsorber

Pacific

Northwest

LABORATORY

os Alamos

FST 1943

NAL LABORATOR

CO₂ Compression System

- Multi-stage integral gear compressor with inter-stage coolers, recycle valves
- Glycol absorption system modeled for moisture control in the sequestration-ready CO₂
- Typical performance curves obtained from a commercial vendor

U.S. DEPARTMENT OF

Automated Learning of Algebraic Models for Optimization

Example Model: BFB Adsorber Inlet Gas Pressure

Superstructure Formulation & Optimization

Insert Algebraic Surrogates into Superstructure

14

$\overline{\mathbf{F}}$

Initial Superstructure Solution

NATIONAL LABORATORY

EST.1943

Simulation-Based Optimization: Verify Solution

Optimized Process Developed using CCSI Toolset

17

Multi-Scale Uncertainty Quantification Framework

• UQ for basic data models

- Bayesian UQ methodology
- Integration of model form discrepancy into process & CFD models

UQ for CFD models

- Adaptive sampling capability for RM/UQ
- Bayesian calibration capability
- UQ of discrepancy between CFD/process models
- UQ for process models
 - Integration with optimization platform
 - Optimization under uncertainty

Dynamic Reduced Models & APC Framework

1-D Capture & Compression System Models

Dynamic Reduced Models (D-RMs)

Motivation and Approaches

First-principles dynamic models for CO₂ capture are computationally expensive. D-RMs are very useful for faster computation

On-Line Applications:

- Use in applications such as advanced process control (APC) and real-time optimization (RTO)
- Must be real-time
- Mainly input/output information is important
- Data-driven D-RMs based on pre-computed results from repeated simulations of a highfidelity dynamic model over a range of input/output (I/O) variable values

Lawrence Livermore National Laboratory

Off-Line Applications:

- Use as surrogate for process models
- Need not be real-time

Carbon Capture Simulation Initiativ

- Provides state information
- Reduced-order D-RMs based on reduction of state space
 - e.g., Proper Orthogonal Decomposition (POD)

Vorthwest

os Alamos

EST 1943

AL LABORA

Dynamic Reduced Models (D-RMs)

Lawrence Livermore

National Laboratory

os Alamos

FST 1943

ONAL LABORATOR

• Tool

D-RM Builder for On-Line Applications

Use high-fidelity ACM/APD models embedded in Simulink to create D-RMs as MATLAB script files (.m files)

Accomplishments

– Data-driven Black Box

- Implemented Nonlinear Autoregressive Moving Average (NARMA) based on Neural Networks
- ➢ Implemented Decoupled A-B Net
 - Linear state-space (Laguerre)
 - Nonlinear mapping from state-space to output using Neural Network

- D-RM Builder

Carbon Capture Simulation Initiative

- Developed preliminary GUI
- Tested on several benchmarks

Advanced Process Control Framework

- Goal
 - Develop estimator-based advanced process control (APC) framework using **D-RM** models
- Approaches
 - Model predictive control (MPC) with input/output constraints
 - Nonlinear state-estimation
 - Recursive: Extended or Unscented Kalman Filter
 - Optimization-based: Moving Horizon **Estimation**
 - Covariance estimation
 - Autocovariance least-squares (ALS)
- Tools
 - APC Framework Tool
 - Use data-driven D-RMs as prediction models embedded in Simulink for realtime APC
 - Option of compiled MATLAB files for high execution speed

Model Predictive Control

Pacific

os Alamos

Controller Design for Maintaining CO₂ Capture

1. Traditional PID Control

2. FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER

3. Offset-free LMPC Using an Integrator

4. Offset-free LMPC Using Unmeasured Disturbance

CONTROLLER PERFORMANCE COMPARISON

Control performances of LMPC-I and LMPC-II are superior to others

CONTROLLER	IAE	ISE	ITAE
	(br)	(br)	(hr^2)
	(111)	(111)	(111-)
(1) PID	0.8111	1.7551	1.12E-04
(2) FBAUGFF	0.4751	0.5502	6.60E-05
(3) I MPC-I	0.3913	0 6138	5.57E-05
		0.0100	
(4) LMPC-II	0.4007	0.6386	6.30E-05
ivermore boratory	Pacific Northwest LaBoratory		ERGY 24

Control Performance Table

Carbon Capture Simulation Initiative

· · · · · · · · ·

BERKELEY LAB

Lawrence L National La

CFD models to reduce time for design/troubleshooting

Deploys Initial Computational Toolset

- Initial toolset released Oct. 2012, 1 year ahead of schedule due to industry request for early access
 - 3 companies already have already licensed
 - Other companies pursing license
- Additional releases planned for Fall 2013, 2014, 2015.
- Final release planned for Jan. 2016

... and the people who made that happen!

Thank you!

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Backup slides

Advanced Process Systems Engineering Approaches

 \equiv

CONSERVATION EQUATIONS

Bubble Region :

Gaseous Components

$$\frac{\partial \left(\delta V C_{b,i}\right)}{\partial t} + \frac{V}{A} \frac{\partial \left(y_{b,i} G_{b,i}\right)}{\partial x} + \delta V K_{bc,i} \left(C_{b,i} - C_{c,i}\right) + K_{g,bulk} = 0$$

$$\frac{\partial \left(C_{P,g} C_{bt} \delta V \left(T_{g,b} - T_{ref}\right)\right)}{\partial t} + \frac{\partial \left(C_{P,g} G_{b} \left(T_{g,b} - T_{ref}\right)\right)}{\partial x} + \delta A H_{bc} \left(T_{g,b} - T_{g,c}\right) - H_{g,bulk} = 0$$

Cloud-wake Region :

Gaseous Components

$$\frac{\partial (f_{cw} \delta \varepsilon_d V C_{c,i})}{\partial t} - V \delta K_{bc,i} (C_{b,i} - C_{c,i}) + V \delta K_{ce,i} (C_{c,i} - C_{e,i}) + V \delta (1 - \varepsilon_d) f_{cw} r_{g,c} = 0$$

$$\frac{\partial (C_{P,g} C_{ct} V \delta f_{cw} e_d (T_{g,c} - T_{ref}))}{\partial t} - A \delta H_{bc} (T_{g,b} - T_{g,c}) + A \delta H_{ce} (T_{g,c} - T_{g,e}) + A f_{cw} \delta (1 - \varepsilon_d) \rho_s a_p h_p (T_{g,c} - T_{s,c})$$

$$- f_{cw} \delta (1 - \varepsilon_d) A \sum_j r_{g,c,i} C_{p,g,c,i} (T_{g,c} - T_{ref}) = 0$$

Adsorbed Species

$$\frac{\partial \left(V f_{cw} \delta (1 - \epsilon_d) n_{c,j} \right)}{\partial t} - \frac{V}{\rho_s} \frac{\partial \left(n_{c,j} J_c \right)}{\partial x} + K_{s,bulk,j} + V \delta K_{cebs} \left(n_{c,j} - n_{e,j} \right) - V f_{cw} \delta (1 - \epsilon_d) r_{s,c} = 0$$

$$\frac{\partial \left(A\Delta x f_{cw} \delta \rho_s C_{P,s} (1 - \varepsilon_d) (T_{s,c} - T_{ref})\right)}{\partial t} + A \frac{\partial \left(J_c C_{P,s} (T_{s,c} - T_{ref}) + h_{ads,c}\right)}{\partial x} + H_{s,bulk} + A \delta \rho_s K_{cebs} (C_{P,s} (T_{s,c} - T_{ref}) + h_{ads,c} - C_{P,s} (T_{s,e} - T_{ref}) + h_{ads,e}) + f_{cw} \delta (1 - \varepsilon_d) A \sum_{j} r_{g,c,i} C_{p,g,c,i} (T_{g,c} - T_{ref}) - A f_{cw} \delta (1 - \varepsilon_d) \rho_s a_p h_p (T_{g,c} - T_{s,c}) = 0$$

31

CONSERVATION EQUATIONS CONTD.

Emulsion Region :

Gaseous Components

$$\frac{\partial \left(V(1 - f_{cw}\delta - \delta)\varepsilon_d C_{e,i} \right)}{\partial t} - \delta A K_{ce,i} \left(C_{c,i} - C_{e,i} \right) - K_{g,bulk} + (1 - f_{cw}\delta - \delta)A(1 - \varepsilon_d) r_{g,e} = 0$$

$$\frac{\partial \left(C_{P,g}C_{et}V(1-f_{cw}\delta-\delta)\varepsilon_{d}\left(T_{g,e}-T_{ref}\right)\right)}{\partial t} - A\delta H_{ce}\left(T_{g,c}-T_{g,e}\right) + H_{g,bulk} + (1-f_{cw}\delta-\delta)(1-\varepsilon_{d})A\rho_{s}a_{p}h_{p}\left(T_{g,e}-T_{s,e}\right) - (1-f_{cw}\delta-\delta)(1-\varepsilon_{d})A\sum_{j}r_{g,e,i}C_{p,g,e,i}\left(T_{g,e}-T_{ref}\right) = 0$$

Adsorbed Species

$$\frac{\partial \left(V(1 - f_{cw}\delta - \delta)(1 - \varepsilon_d)n_{e,j} \right)}{\partial t} + \frac{V}{\rho_s} \frac{\partial \left(n_{e,j}J_e\right)}{\partial x} - K_{s,\text{bulk},j} - V\delta K_{\text{cebs}} \left(n_{c,j} - n_{e,j}\right) - V(1 - f_{cw}\delta - \delta)(1 - \varepsilon_d)r_{s,e} = 0$$

$$\frac{\partial \left(C_{P,s}\rho_{s}A(1-f_{cw}\delta-\delta)(1-\varepsilon_{d})\left(T_{s,e}-T_{ref}\right)\right)}{\partial t} + A \frac{\partial \left(J_{e}C_{P,s}\left(T_{s,e}-T_{ref}\right)+h_{ads,e}\right)}{\partial x} - \mathbf{H}_{s,\mathrm{bulk}} \\ - A\delta\rho_{s}K_{cebs}\left(C_{P,s}\left(T_{s,c}-T_{ref}\right)+h_{ads,c}-C_{P,s}\left(T_{s,e}-T_{ref}\right)+h_{ads,e}\right) \\ + (1-f_{cw}\delta-\delta)(1-\varepsilon_{d})A \sum_{j} r_{g,e,i}C_{p,g,e,i}\left(T_{g,e}-T_{ref}\right) - (1-f_{cw}\delta-\delta)(1-\varepsilon_{d})A\rho_{s}a_{p}h_{p}\left(\mathbf{T}_{g,e}-\mathbf{T}_{s,e}\right) \\ - \pi d_{HX}h_{t,x}\Delta T_{hx}N_{HX}C_{r} = 0$$

HYDRODYNAMIC MODEL

Lawrence Livermore

aboratory

$$v_{b,x} = v_{g,x} - v_{mf} + 0.35 \sqrt{g D_{t,h}}$$

$$K_{bc, j, x} = 1.32 \times 4.5 \frac{v_{mf}}{d_{b, x}} + 5.85 \frac{D_{j, x}^{0.5} g^{0.25}}{d_{b, x}^{5/4}}$$

$$K_{ce,j,x} = 6.78 \sqrt{\frac{\varepsilon_{d,x}^{2} D_{j,x} v_{b,x}}{d_{b,x}^{3}}}$$

Pacific

Sit and Grace (1981)

Process Model of the Integrated System

 $\overline{\mathbf{r}}$

34

Uncertainty Quantification: How certain are we that our model can predict the system performance accurately?

