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Presenter
Presentation Notes
We are developing, demonstrating and deploying advanced computational tools and models to accelerate the development of next generation technologies, specifically the development of cost effective carbon capture technologies. 
This CCSI Toolset will (1) enable promising concepts to be evaluated more quickly based on an optimized process, (2) reduce the time for design and troubleshooting by integrating process and device scale simulations to better predict performance and more effectively resolve issues, (3) quantify technical risk to enable more focused scale up activities, and finally, (4) stabilize the costs during commercial deployment by having a more comprehensive understanding of the process and underlying behavior of the system. 
The team, representing NETL, LBNL, LANL, LLNL, PNNL, Carnegie Mellon U., West Virginia U., Princeton U. and Boston U.,  U of Texas and U or Utah provides an excellent example of the accomplishments possible when bringing together the great talent that exists across DOE to work collaboratively on an issue of national importance. 
The CCSI Industry Advisory Board includes companies energy technology providers (such as Babcock & Wilcox, GE, Fluor and Alstom), chemical companies (such as Eastman Chemical, DuPont and Air Products), petrochemical companies (such as ExxonMobil, Chevron, and Phillips 66) as well as other companies such as Boeing. 



3 

TM 

 

Risk Analysis (Technical Risk, Financial Risk) & Decision Making 

 
Process Design & 

Optimization 
Tools 

Cross-Cutting Integration Tools 
Data Management, Remote Execution Gateway, GUI, Build & Test Environment, Release Management 

 

Process Models 

 

Validated High-Fidelity CFD & UQ  

 
High Resolution 

Filtered Sub-models 

Advanced Computational Tools to Accelerate 
Next Generation Technology Development 

Basic Data Sub-models 

Advanced 
Process Control 

& 
Dynamics 

Uncertainty Quantification 

Uncertainty Quantification 

Uncertainty Quantification 



4 

TM 

Tools to develop an optimized process using rigorous models 
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Presenter
Presentation Notes
Optimization tools for process synthesis & design
The technical and economic performance characteristics of a new technology are strongly dependent on the configuration, interconnections operating conditions and integration of equipment into a process. Thus, in order to rigorously screen and evaluate new technologies, it is important to ensure that an optimal process is used for the evaluation. The optimization tools being developed by CCSI will (in conjunction with CCSI Models and RM tools) enable the identification of optimal equipment configurations for potential capture processes allowing (1) more effective screening of materials and concepts, and (2) identifying the types of devices and processes that should be the focus of more detailed modeling and analysis. 

This approach utilizes CCSI-developed rigorous process models incorporated CCSI-developed basic data submodels. 
These process models can be integrated using a CCSI-developed simulation-based optimization framework which utilizes advanced derivative free optimizers and can run thousands of simulations in parallel to develop an optimal process. 
Alternatively, a superstructure can be used to develop an optimal process configuration balancing operational cost with capital cost. CCSI has development an approach to automatically general algebraic models (suitable for such superstructure optimization) from the rigorous process models, enabling consistency among approaches and making these advanced optimization approaches more accessible to industry. 
Since the superstructure is optimized using surrogate models, the resulting process can be verified and further optimized by using the simulation-based optimization framework.
The resulting process can then be assessed for uncertainty. Future work will integrate uncertainty quantification capabilities directly with the optimization tools to directly enable optimization under uncertainty.


Computationally screen sorbent materials, devices, and processes: Developing processes based on a few, promising materials reduces development cost and time
Rapidly consider the trade-offs associated with putting a new concept into a process: Quickly developing an optimized process shows the potential of new a concept when integrated into a system
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Basic Data Submodel 
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*Lee et al. A model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water, 28th 
International Pittsburgh Coal Conference 2011, Pittsburgh, PA, USA. 
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Development of Bubbling Fluidized Bed 
Model 

• 1-D two-phase pressure-driven non-isothermal dynamic model of a solid-
sorbent CO2 capture in a two-stage bubbling fluidized bed reactor system. 

• Models are flexible such that it can be used as an adsorber or regenerator 
• Embedded cooler/heater depending on the application 
• Flexible configuration- solids can enter/leave at/from the top or bottom 
• A 2-stage adsorption model with customized variables suitable for 

incorporating UQ has been developed 
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Modeling Domain* 

MODEL DEVELOPMENT 

• Gaseous species : CO2, N2, H2O 
• Solid phase components: bicarbonate, carbamate, and 

physisorbed water. 
• Transient species conservation and energy balance 

equations for both gas and solid phases in all three 
regions. 

6/5/2013 
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*Lee, A.; Miller, D. A  One-Dimensional (1-D) Three Region Model for a Bubbling Fluidized Bed Adsorber. Ind. Eng. Chem. Res. 52, 469-484, 2013 
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Bubbling Bed Model : Results 
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 A 1-d two-phase model of the moving bed model with embedded heat exchanger developed  
    mainly for regenerator 
      
 Integrated pre and post-heat exchangers are considered for heat  recovery 
 
 Gas and solids flows are modeled by plug flow model with axial dispersion 
 
 For pressure drop calculation, a modified Ergun equation by using the slip  
    velocity between the solids and gas is used instead of the superficial fluid 
     velocity 
 
 Energy balance equations consider heat transfer between solid and gas  
    and tube wall and the mixed phase 
 
 Heat transfer coefficient between the mixed phase and the tube wall is  
    calculated by a modified packet-renewal theory 
 
 Bed hydrodynamics are described by analogy to fixed bed and fluidized  
    bed systems 
 
 Reaction kinetics are similar to the bubbling bed model 
 

Development of Moving Bed Model 
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Moving Bed Regenerator: Results 
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Solid Sorbent Models: Balance of the Plant 
Heat-Recovery System 

 Dynamic model of heat recovery system including  pre and post-heat exchangers has been completed 
 

Solids Transport 
 Model of  pneumatic transport system has been completed by considering various options for transport gas  
    with the design objective of minimizing auxiliary power consumption 
      
 

CO2 Compression System 

 Multi-stage integral gear compressor with inter-stage  
   coolers, recycle valves 
  Glycol absorption system modeled for moisture control 
   in the sequestration-ready CO2 
  Typical performance curves obtained from a commercial 
     vendor 
 

LP CO2 rich stream 
 from regenerator 
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Make-up 
 TEG Water 
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Automated Learning of Algebraic Models for Optimization 

For building accurate, 
simple algebraic 

surrogate models of 
simulated processes 

Example Model: BFB Adsorber Inlet Gas Pressure 

 ACM Simulation 

 >900 terms possible 

 14 input variables 

 0.13% error 

Pressure drop across 
length of bed 

Proportional to 
outlet pressure 

Pressure drop due 
to bed diameter 

Presenter
Presentation Notes
We are trying to build a model, z hat, of some output of our simulation z.  Unfortunately, we do not know the functional form of the model.  However, we can pose a large set of basis functions that can be found from polynomial and multinomial terms, engineering analysis, experience, or simulation knowledge.

This could be temperature, temperature squared, or a functional form that you expect because you know the reaction kinetics or the heat transfer properties.  The basis functions need not be correct, but a good guess at a component of the model.

From there, we use a series of statistical, machine learning, and optimization methods to determine the best subset of these basis functions to define our surrogate.

Now we would like to find where our model breaks down.  We will use a DFO solver to locate areas in our design space that our surrogate has high model error.

We will then sample these new locations, and rebuild the model.

If during this step, no points that violate the model can be found, we will consider our model sufficiently accurate.
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Superstructure Formulation & Optimization 
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Presenter
Presentation Notes
Optimization tools for process synthesis & design
The technical and economic performance characteristics of a new technology are strongly dependent on the configuration, interconnections operating conditions and integration of equipment into a process. Thus, in order to rigorously screen and evaluate new technologies, it is important to ensure that an optimal process is used for the evaluation. The optimization tools being developed by CCSI will (in conjunction with CCSI Models and ROM tools) enable the identification of optimal equipment configurations for potential capture processes allowing (1) more effective screening of materials and concepts, and (2) identifying the types of devices and processes that should be the focus of more detailed modeling and analysis. Optimization-based approaches for process synthesis are not currently widely used. Instead, industry currently relies on historical expertise that has accumulated over the many years of experience to develop new processes. Such historical expertise does not exist for large scale carbon capture processes. Thus, a rigorous optimization can help compress the development cycle by more quickly enabling the process integration, which has taken decades in other industries.
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Insert Algebraic Surrogates into Superstructure 
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Presenter
Presentation Notes
Optimization tools for process synthesis & design
The technical and economic performance characteristics of a new technology are strongly dependent on the configuration, interconnections operating conditions and integration of equipment into a process. Thus, in order to rigorously screen and evaluate new technologies, it is important to ensure that an optimal process is used for the evaluation. The optimization tools being developed by CCSI will (in conjunction with CCSI Models and ROM tools) enable the identification of optimal equipment configurations for potential capture processes allowing (1) more effective screening of materials and concepts, and (2) identifying the types of devices and processes that should be the focus of more detailed modeling and analysis. Optimization-based approaches for process synthesis are not currently widely used. Instead, industry currently relies on historical expertise that has accumulated over the many years of experience to develop new processes. Such historical expertise does not exist for large scale carbon capture processes. Thus, a rigorous optimization can help compress the development cycle by more quickly enabling the process integration, which has taken decades in other industries.
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Initial Superstructure Solution 
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Presenter
Presentation Notes
Optimization tools for process synthesis & design
The technical and economic performance characteristics of a new technology are strongly dependent on the configuration, interconnections operating conditions and integration of equipment into a process. Thus, in order to rigorously screen and evaluate new technologies, it is important to ensure that an optimal process is used for the evaluation. The optimization tools being developed by CCSI will (in conjunction with CCSI Models and ROM tools) enable the identification of optimal equipment configurations for potential capture processes allowing (1) more effective screening of materials and concepts, and (2) identifying the types of devices and processes that should be the focus of more detailed modeling and analysis. Optimization-based approaches for process synthesis are not currently widely used. Instead, industry currently relies on historical expertise that has accumulated over the many years of experience to develop new processes. Such historical expertise does not exist for large scale carbon capture processes. Thus, a rigorous optimization can help compress the development cycle by more quickly enabling the process integration, which has taken decades in other industries.
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Simulation-Based Optimization: Verify Solution 

Presenter
Presentation Notes
Simulation-based optimization framework can be used to verify the superstructure solution using the rigorous process models.

Local and/or remote execution. Via the Turbine Science Gateway, up to 1000 simultaneous process simulations can be run for optimization and/or uncertainty quantification. Demonstrated capabilities with both Aspen tools and PSE go:Run.
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Optimized Process Developed using CCSI Toolset 

∆Loading 
1.8 mol CO2/kg 

0.66 mol H2O/kg 

Solid Sorbent MEA27 
(∆10°C HX) 

MEA27 
(∆5°C HX) 

Q_Rxn (GJ/tonne CO2) 1.82 1.48 1.48 
Q_Vap (GJ/tonne CO2) 0 0.61 0.74 
Q_Sen (GJ/tonne CO2) 0.97 1.35 0.68 

Total Q 2.79 3.44 2.90 

Presenter
Presentation Notes
As an early demonstration of the CCSI toolset, this comprehensive integrated solid sorbent capture process was developed using the CCSI process models and optimization tools. 

The optimization tools helped to identify, for the NETL developed PEI-based sorbent 32D, a process consisting of a 2 stage bubbling fluidized bed adsorber and a moving bed regenerator. 

This process serves as the basis for the demonstration of the other components of the CCSI toolset.

Among the significant outcomes of developing this process was a better understanding of the complex role of moisture within the capture system. In addition, it demonstrates the importance of simultaneously optimizing working capacity, operating conditions and reactor design to balance the tradeoffs among each.
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Multi-Scale Uncertainty Quantification Framework 

Chemistry 
model 

Bayesian inference 

With model-form  
correction Sorbent  

Process 
Model 

Sorbent  
Process 
Model 

Optimization & UQ Framework

Unified interface for 
UQ, steady-state RM, 
and optimization.

• UQ for basic data models 
– Bayesian UQ methodology 
– Integration of model form discrepancy into process & CFD models 

• UQ for CFD models 
– Adaptive sampling capability for RM/UQ 
– Bayesian calibration capability 
– UQ of discrepancy between CFD/process models 

• UQ for process models 
– Integration with optimization platform 
– Optimization under uncertainty  

Presenter
Presentation Notes
Of particular importance within CCSI is the multiple scales are which uncertainty quantification tools are employed. We recognize 3 primary types of model for which UQ is necessary. Each has specific requirements.

(read slide)

Top Right: probability distribution of % capture without using Bayesian inference approach for chemistry model uncertainty (just +/- 20% on parameters)
Lower right: probability distribution of % capture for the CCSI demonstration process when considering uncertainty.
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Advanced Process Control Framework 

   1-D  Capture & Compression System Models 

Dynamic Reduced Models & APC Framework 

Dynamic Reduced 
Models 
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D-RM

• Motivation and Approaches 
– First-principles dynamic models for CO2 capture are computationally expensive. D-RMs 

are very useful for faster computation 
On-Line Applications: 
– Use in applications such as advanced process control (APC) and real-time optimization 

(RTO) 
– Must be real-time 
– Mainly input/output information is important 
– Data-driven D-RMs based on pre-computed results from repeated simulations of a high-

fidelity dynamic model  over a range of input/output (I/O) variable values 
Off-Line Applications: 
– Use as surrogate for process models 
– Need not be real-time 
– Provides state information 
– Reduced-order D-RMs based  

on reduction of state space 
o e.g., Proper Orthogonal  

Decomposition (POD) 

 
 

Dynamic Reduced Models (D-RMs) 



21 

TM 

• Tool 
– D-RM Builder for On-Line 

Applications 
Use high-fidelity ACM/APD models 

embedded in Simulink to create D-RMs 
as MATLAB script files (.m files)  

• Accomplishments 
– Data-driven Black Box 
Implemented Nonlinear Autoregressive 

Moving Average (NARMA) based on 
Neural Networks 
Implemented Decoupled A-B Net  
 Linear state-space (Laguerre) 
 Nonlinear mapping from state-space  

to output using Neural Network 
– D-RM Builder 
Developed preliminary GUI  
Tested on several benchmarks 

 
 

Dynamic Reduced Models (D-RMs) 

D-RM Builder  
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Obtain High 
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InformationConfigure 

relevant I/O 
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GUI for Configuring 
Inputs/Outputs

Integrate D-RM 
with Process 
Simulation

Post-Processing
Regression Analysis

Predict Output
Visualization
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Training Sequence

MATLAB 
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Launching 
Process 
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D-RM Builder Graphical 
User Interface (GUI)

D-RM in Form of 
MATLAB 

Subroutine / 
Simulink Model
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• Goal 
– Develop estimator-based advanced 

process control (APC) framework using 
D-RM models 

• Approaches 
– Model predictive control (MPC) with 

input/output constraints 
– Nonlinear state-estimation 
o Recursive: Extended or Unscented 

Kalman Filter  
o Optimization-based: Moving Horizon 

Estimation 
– Covariance estimation 
o Autocovariance least-squares (ALS)  

• Tools 
– APC Framework Tool 
o Use data-driven D-RMs as prediction 

models embedded in Simulink for real-
time APC  

o Option of compiled MATLAB files for  
high execution speed 

Advanced Process Control Framework 

Model Predictive Control 
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Controller Design for Maintaining CO2 Capture 

1. Traditional PID Control 

2. FEEDBACK-
AUGMENTED 
FEEDFORWARD 
CONTROLLER 

3. Offset-free LMPC 
 Using an Integrator 

4. Offset-free LMPC Using  
Unmeasured Disturbance 



24 

TM 

CONTROLLER PERFORMANCE COMPARISON 

Control performances of 
LMPC-I and LMPC-II are 
superior to others 
 

Control Performance Table 
 

CONTROLLER IAE ISE ITAE 

  (hr) (hr) (hr2) 

(1) PID 0.8111 1.7551 1.12E-04 

(2) FBAUGFF 0.4751 0.5502 6.60E-05 

(3) LMPC-I 0.3913 0.6138 5.57E-05 

(4) LMPC-II 0.4007 0.6386 6.30E-05 
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CFD models to reduce time for design/troubleshooting 

Heat-transfer-tube-scale 
hydrodynamics 
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Presenter
Presentation Notes
Process modeling for design and control are just one part of CCSI. These tools are used in conjunction with multi-scale CFD tools and experimental validation experiments. So, for example, based on likely design conditions, advanced experimentally validated CFD models are being built which industry can use to more reliably address their scale up problems and enable industry to more effectively utilize simulation to reduce the time and cost to develop cost effective and reliable carbon capture processes. 

This figure shows the same basic data (developed using CCSI-developed SORBENTFIT) being used for the process model and the CFD model. 

The CFD model incorporates validated, high resolution submodels (right). 

The overall CFD simulation is experimentally validated (top left) using data from NETL and other sources.

The figure in the lower right shows a response surface to help assess the uncertainty in the large scale CFD device model.

The process models can then be updated and validated from the more detailed, experimentally validated CFD models.

Reduce the time for design & troubleshooting
Use physics-based device models for design confirmation and  troubleshooting: Simulations will help to identify and correct design flaws, reducing development cost and time; e.g., Eliminating rework in a major device could save ~$30M and avoid 6 months delay
Determine optimal designs: Optimal designs will help focus efforts on the best configurations, thereby, speeding up its adoption
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Uncertainty in 
predictions 

Deploys Initial Computational Toolset 

• Initial toolset released Oct. 2012, 1 year ahead of schedule 
due to industry request for early access 
– 3 companies already have already licensed 
– Other companies pursing license 

• Additional releases planned for Fall 2013, 2014, 2015. 
• Final release planned for Jan. 2016 

Presenter
Presentation Notes
CCSI released its first set of computational tools and models on October 10th at its semi-annual Industry Advisory Board (IAB) Meeting in San Francisco, CA. This pre-release, a year ahead of the originally planned first release, is the result of intense industry interest in getting early access to the tools and the phenomenal progress of the CCSI technical team. These initial components of the CCSI Toolset provide new models and computational capabilities that will accelerate the commercial development of carbon capture technologies. The release consists of new tools for process synthesis and optimization to help identify promising concepts more quickly, new physics-based models of potential capture equipment and processes that will reduce the time to design and troubleshoot new systems, a framework to quantify the uncertainty of model predictions, and various enabling tools that provide new capabilities such as creating reduced order models (ROMs) from reacting multiphase flow simulations and running thousands of concurrent process simulations concurrently for optimization and uncertainty quantification.  The pictures at the right show elements of the released tools and models.

Following the IAB Mtg., companies that have signed a Test and Evaluation license will be able to begin using the tools, while providing feedback to the technical team to further refine and improve the overall CCSI Toolset. The final release of the completed toolset is planned for January 2016.

The figure at the lower left shows the categories of computational tools and models encompass tools. These link basic data submodels (such as atomic-level reaction kinetics) with higher-level device and process simulations all the way through integrated risk analysis and decision models. Two key CCSI capabilities include (1) linking quantified uncertainty throughout many of the modeling scales (as highlighted in yellow), and (2) comprehensive optimization capabilities, which enables more advanced, highly integrated designs to be developed more quickly and rigorously. The optimization capability includes both new approaches to employ deterministic, global optimization algorithms as well as new approaches to employ derivative free optimization tools to complex simulations run in parallel through a gateway. Models and sub-models are validated using a comprehensive hierarchical method which makes use of the UQ tools.

Three major approaches to uncertainty quantification
UQ for basic data models
Bayesian UQ methodology
Further development & demonstration of approach
Integration of model form discrepancy into process & CFD models
UQ for CFD models
Adaptive sampling capability for RM/UQ
Bayesian calibration capability
RM with error estimation/validation
UQ of discrepancy between CFD/process models
UQ for process models
Windows-based platform
Integration with optimization platform
Optimization under uncertainty 
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… and the people who made that happen! 
57 Nat’nl Lab researchers 
20 Industry representatives 
13 Students/post-docs 
  9 Professors 
  5 National Labs 
  6 Universities 
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This presentation was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, 
or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does 
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

Thank you! 

Disclaimer 
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Presenter
Presentation Notes
Optimization tools for process synthesis & design
The technical and economic performance characteristics of a new technology are strongly dependent on the configuration, interconnections operating conditions and integration of equipment into a process. Thus, in order to rigorously screen and evaluate new technologies, it is important to ensure that an optimal process is used for the evaluation. The optimization tools being developed by CCSI will (in conjunction with CCSI Models and ROM tools) enable the identification of optimal equipment configurations for potential capture processes allowing (1) more effective screening of materials and concepts, and (2) identifying the types of devices and processes that should be the focus of more detailed modeling and analysis. Optimization-based approaches for process synthesis are not currently widely used. Instead, industry currently relies on historical expertise that has accumulated over the many years of experience to develop new processes. Such historical expertise does not exist for large scale carbon capture processes. Thus, a rigorous optimization can help compress the development cycle by more quickly enabling the process integration, which has taken decades in other industries.
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CONSERVATION EQUATIONS 
Bubble Region : 

Cloud-wake Region : 

Adsorbed Species 

Gaseous Components 

Gaseous Components 
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Emulsion Region : 

CONSERVATION EQUATIONS CONTD. 

Gaseous Components 

Adsorbed Species 
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Mori and Wen (1975) 
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Sit and Grace (1981) 
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Process Model of the Integrated System 

Presenter
Presentation Notes
Perhaps just use the previous figure?
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Uncertainty Quantification: How certain are we that our 
model can predict the system performance accurately? 

CCSI simulation 

Risk  
analysis 

 How to quantify these error bounds a priori? 
 How to reduce these bounds?  

Operating condition 
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How does the uncertainty in the 
prediction affect the risk 
assessment outcome? 

Scaled-up 
design 

Presenter
Presentation Notes
 e.g., CO2 capture fraction, parasitic energy requirements 
 how to quantify these error bounds?
 how to reduce these bounds? (e.g. use sensitivity analysis and experimental data)

Skipping an intermediate scale will reduce the cost (~$100 M) and time for technology development (~5 years)
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